首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Precise patterning by laser ablation requires sufficient absorption. For weak absorbers like fused silica indirect methods using external absorbers have been developed. A novel approach using a solid SiO absorber coating is described. Irradiation by an ArF excimer laser (wavelength 193 nm) is leading to ablation of the coating and, at sufficiently high fluence, of the fused silica substrate. The remaining coating in the unexposed areas is removed afterwards by large area irradiation. The fluence threshold for substrate ablation using a 28 nm thick absorber layer is about 1.1 J/cm2. Single pulse ablation rates of up to 800 nm and a surface roughness of R a<5 nm are obtained. High resolution grating patterns with 400 nm period and a modulation depth of 80 nm are possible. The process can be described as controlled plasma mediated ablation.  相似文献   

2.
We present an optimized contacting scheme for multicrystalline silicon thin film solar cells on glass based on epitaxially crystallized emitters with a thin Al2O3 layer and a silver back reflector. In a first step a 6.5 µm thick amorphous silicon absorber layer is crystallized by a diode laser. In a second step a thin silicon emitter layer is epitaxially crystallized by an excimer laser. The emitter is covered by an Al2O3 layer with a thickness ranging from 1.0 nm to 2.5 nm, which passivates the surface and acts as a tunnel barrier. On top of the Al2O3 layer a 90–100 nm thick silver back reflector is deposited. The Al2O3 layer was found to have an optimal thickness of 1.5 nm resulting in solar cells with back reflector that achieve a maximum open‐circuit voltage of 567 mV, a short‐circuit current density of 27.9 mA/cm2, and an efficiency of 10.9%. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

3.
Ion implantation offers new possibilities for silicon solar cell production, e.g. single side doping that can be structured in‐situ with shadow masks. While phosphorus implantations can easily be annealed at low temperature, the annealing of boron implantations is challenging. In this study, we use low energy implantations of boron (1 keV and 5 keV) with a projected range of 5.6 nm and 21.2 nm that form defects causing charge carrier recombination after a low temperature anneal (950 °C, 30 min). An ozone‐based wet chemical etching step is applied to remove this near surface damage. With increasing chemical etch‐back the electrical quality (i.e. emitter saturation current density, J0e) improves continuously. The calculated limit for J0e was reached with an abrasion of 35 nm for 1 keV and 85 nm for 5 keV implantations, showing that the relevant defects causing charge carrier recombination are located very close to the surface, corresponding to the as‐implanted profile depth. This emitter etch‐back allows for the fabrication of defect free boron doping profiles with good sheet resistance uniformity (standard deviation <2%). With the resulting characteristics (sheet resistance <100 Ω/sq, surface doping concentration >5 × 1019 cm–3, J0e < 30 fA/cm2), these boron profiles are well suited for silicon solar cells. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
《Current Applied Physics》2018,18(2):191-199
We fabricated kesterite Cu2ZnSnSe4 (CZTSe) solar cells and studied device characteristics, where CZTSe absorbers were made by using two-step process. First, we deposited precursor CZTSe films with spin-coating or sputtering, and performed sulfurization and subsequent selenization. To complete the device, we applied In2S3 as a buffer layer. We obtained power conversion efficiency (PCE) of 4.18% with spin-coated CZTSe absorber and 5.60% with sputtered CZTSe absorber. Both devices showed deep defects in the bulk and strong interface recombinations near the pn junction. In addition, we observed red-kinks in the current density-voltage (J-V) curves for both devices under the filtered light illumination (>660 nm), which is attributed to large conduction band offset (CBO) between the CZTSe absorber and the buffer layer and defect states in the buffer/CZTSe absorber or in the buffer. The red-kink was also observed in CZTSe (PCE of 7.76%) solar cell with CdS buffer. Hence, to enhance the PCE with CZTSe absorber, along with suppression of deep defects which act as recombination center, optimization of CBO between absorber and buffer is also required.  相似文献   

5.
S.Y. Cheng  Y.G. Wang  Jau Tang  L. Zhang  L. Sun  X.C. Lin  J.M. Li 《Optik》2012,123(14):1279-1281
The pure semiconductor type single wall carbon nanotubes (SWCNT) was transferred on hydrophilic glass substrate to fabricate saturable absorbers by vertical evaporation technique. The recovery time of the absorber is 350 fs. The saturation intensity of the absorber was found to be 115 μJ/cm2 at 1060 nm. The modulation depth of the absorber could be about 7%. Passive mode-locked Nd:YVO4 laser using this kind of absorber was demonstrated. The largest average output power of the mode-locked laser is 1.4 W at the pump power of 7.8 W. The continuous wave mode-locked pulses with the repetition of 80 MHz were achieved.  相似文献   

6.
Silicon (Si) nanoparticles with average size of 13 nm and orange–red luminescence under UV absorption were synthesized using electrochemical etching of silicon wafers. A film of Si nanoparticles with thickness of 0.75 µm to 2.6 µm was coated on the glass (TiO2 side) of a dye‐sensitized solar cell (DSSC). The cell exhibited nearly 9% enhancement in power conversion efficiency (η) at film thickness of ~2.4 µm under solar irradiation of 100 mW/cm2 (AM 1.5) with improved fill factor and short‐circuit current density. This study revealed for the first time that the Si‐nanoparticle film converting UV into visible light and helping in homogeneous irradiation, can be utilized for improving the efficiency of the DSSCs. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Silicon is now firmly established as a high performance photonic material. Its only weakness is the lack of a native electrically driven light emitter that operates CW at room temperature, exhibits a narrow linewidth in the technologically important 1300–1600 nm wavelength window, is small and operates with low power consumption. Here, an electrically pumped all‐silicon nano light source around 1300–1600 nm range is demonstrated at room temperature. Using hydrogen plasma treatment, nano‐scale optically active defects are introduced into silicon, which then feed the photonic crystal nanocavity to enhance the electrically driven emission in a device via Purcell effect. A narrow ( nm) emission line at 1515 nm wavelength with a power density of is observed, which represents the highest spectral power density ever reported from any silicon emitter. A number of possible improvements are also discussed, that make this scheme a very promising light source for optical interconnects and other important silicon photonics applications.  相似文献   

8.
Poly(vinylpyrrolidone)‐stabilized silver nanoparticles deposited onto strained‐silicon layers grown on graded Si1−xGex virtual substrates are utilized for selective amplification of the Si–Si vibration mode of strained silicon via surface‐enhanced Raman scattering spectroscopy. This solution‐based technique allows rapid, highly sensitive and accurate characterization of strained silicon whose Raman signal would usually be overshadowed by the underlying bulk SiGe Raman spectra. The analysis was performed on strained silicon samples of thickness 9, 17.5 and 42 nm using a 488 nm Ar+ micro‐Raman excitation source. The quantitative determination of strained‐silicon enhancement factors was also made. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
By studying the minority carrier lifetime in recently manufactured commercially available n‐ and p‐type float‐zone (FZ) silicon from five leading suppliers, we observe a very large reduction in the bulk lifetime when FZ silicon is heat‐treated in the range 450–700 °C. Photoluminescence imaging of these samples at the wafer scale revealed concentric circular patterns, with higher recombination occurring in the centre, and far less around the periphery. Deep level transient spectroscopy measurements indicate the presence of recombination active defects, including a dominant center with an energy level at ~Ev + 0.5 eV. Upon annealing FZ silicon at temperatures >1000 °C in oxygen, the lifetime is completely recovered, whereby the defects vanish and do not reappear upon subsequent annealing at 500 °C. We conclude that the heat‐treatments at >1000 °C result in total annihilation of the recombination active defects. Without such high temperature treatments, the minority carrier lifetime in FZ silicon is unstable and will affect the development of high efficiency (>24%) solar cells and surface passivation studies.  相似文献   

10.
Y.G. Wang  S.Y. Cheng  P.T. Tai  J. Tang 《Optik》2012,123(4):348-351
The vertical evaporation technique allows us to fabricate aligned single wall carbon saturable absorbers. The nonlinear parameters of the absorber at the wavelength of 940 nm were measured. The measured bi-exponential lifetimes of the absorber are 330 fs and 850 fs, respectively. The saturation intensity and modulation depth were found to be 2000 μJ/cm2 and 10% for SWCNT absorber at the direction of alignment, in comparison to 950 μJ/cm2 and 7% for the SWCNT solution.  相似文献   

11.
An 8‐channel hybrid (de)multiplexer to simultaneously achieve mode‐ and polarization‐division‐(de)multiplexing is proposed and demonstrated experimentally on a silicon‐on‐insulator platform to improve the link capacity of an on‐chip optical interconnect. The present hybrid (de)multiplexer has four channels for each polarization. A polarization beam splitter based on a three‐waveguide coupler is used to combine/separate the fundamental modes of TE‐ and TM‐polarizations (TE0 and TM0). Six asymmetric directional couplers are cascaded for (de)multiplexing the high‐order modes (TE1, TE2, TE3, TM1, TM2, and TM3). The experimental results show all eight channels have low loss and low crosstalk (<−10 dB) over a ∼ 30 nm wavelength range.  相似文献   

12.
Silicon waveguide polarizers offer a simple yet robust approach to address the polarization‐dependent issue of silicon‐based optical components, and hence have found numerous applications in silicon photonics. However, the available silicon waveguide polarizers suffer from the issue of large device footprint, high insertion loss (IL), and/or fabrication complexities. Here, a silicon waveguide transverse magnetic (TM)‐pass polarizer is constructed by coating a silicon waveguide with an ultra‐thin plasmonic metasurface structure that is capable of guiding slow surface wave (SW) mode. The transverse electric (TE) waveguide mode can be converted into SW mode with the involvement of metasurfaces, and hence is intrinsically absorbed and forbidden to pass, while the TM waveguide mode can be well guided due to little influence. A typical metasurface polarizer with an ultra‐short length of 2.4 µm enables the IL of 28.16 dB for the TE mode, and that of 0.53 dB for the TM mode at 1550 nm. Multiple‐band TM‐pass polarizers can be obtained by cascading two or more different metasurface‐coated silicon waveguides along the propagation direction, and a dual‐band TM‐pass polarizer is demonstrated with the IL being of 19.21 and 29.09 dB for the TE mode at 1310 and 1550 nm, respectively.  相似文献   

13.
We demonstrate industrially feasible large‐area solar cells with passivated homogeneous emitter and rear achieving energy conversion efficiencies of up to 19.4% on 125 × 125 mm2 p‐type 2–3 Ω cm boron‐doped Czochralski silicon wafers. Front and rear metal contacts are fabricated by screen‐printing of silver and aluminum paste and firing in a conventional belt furnace. We implement two different dielectric rear surface passivation stacks: (i) a thermally grown silicon dioxide/silicon nitride stack and (ii) an atomic‐layer‐deposited aluminum oxide/silicon nitride stack. The dielectrics at the rear result in a decreased surface recombination velocity of Srear = 70 cm/s and 80 cm/s, and an increased internal IR reflectance of up to 91% corresponding to an improved Jsc of up to 38.9 mA/cm2 and Voc of up to 664 mV. We observe an increase in cell efficiency of 0.8% absolute for the cells compared to 18.6% efficient reference solar cells featuring a full‐area aluminum back surface field. To our knowledge, the energy conversion efficiency of 19.4% is the best value reported so far for large area screen‐printed solar cells. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We demonstrate the processing of a heterojunction solar cell from a purely macroporous silicon (MacPSi) absorber that is generated and separated from a monocrystalline n‐type Cz silicon wafer by means of electrochemical etching. The etching procedure results in straight pores with a diameter of (4.7 ± 0.2) µm and a distance of 8.3 µm. An intrinsic amorphous Si (a‐Si)/p+‐type a‐Si/indium tin oxide (ITO) layer stack is on the front side and an intrinsic a‐Si/n+‐type a‐Si/ITO layer stack is on the rear side. The pores are open when depositing the layers onto the 3.92 cm2‐sized cell. The conductive layers do not cause shunting through the pores. A silicon oxide layer passivates the pore walls. The energy‐conversion efficiency of the (33 ± 2) µm thick cell is 7.2%. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We have successfully improved the reproducibility of tip‐enhancement effect on metallized silicon cantilever tips for characterization of carbon nanotubes. Plasmon resonance tuning relative to an excitation wavelength is crucial for efficient tip‐enhancement, which is accomplished by thermal oxidization and subsequent metallization of commercial silicon tips. Because of the change of the refractive index of the tip from silicon to silicon dioxide, the plasmon resonance of the silver‐coated tip is blue‐shifted showing an enormous enhancement at 532 nm excitation. Highly reproducible tips exhibit an enhancement factor of >100 with a 100% yield. Because the tips are fabricated from commercially available silicon cantilever tips in a simple and robust way, our approach provides an important step of ‘tip‐enhanced Raman spectroscopy for everyone’. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In the effort to increase the stable efficiency of thin film silicon micromorph solar cells, a silicon oxide based intermediate reflector (SOIR) layer is deposited in situ between the component cells of the tandem device. The effectiveness of the SOIR layer in increasing the photo‐carrier generation in the a‐Si:H top absorber is compared for p–i–n devices deposited on different rough, highly transparent, front ZnO layers. High haze and low doping level for the front ZnO strongly enhance the current density (Jsc) in the μc‐Si:H bottom cell whereas Jsc in the top cell is influenced by the angular distribution of the transmitted light and by the reflectivity of the SOIR related to different surface roughness. A total Jsc of 26.8 mA/cm2 and an initial conversion efficiency of 12.6% are achieved for 1.2 cm2 cells with top and bottom cell thicknesses of 300 nm and 3 μm, and without any anti‐reflective coating on the glass. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The effect of oxygen on the light emission from a Si (1 0 0) semiconductor bombarded by energetic Kr+ ions has been studied in the 200–300 nm wavelength range. The influence of oxygen was verified by studying the optical spectra of SiO2 bombarded under similar experimental conditions. It has been found that the measured intensities of the emitted photons are always higher in the presence of oxygen, even higher than those obtained for SiO2. The electron-transfer model can explain our experimental observations. We do believe that in the presence of oxygen, an intermediate structure of silicon sub-oxide SiOX<2 is formed on silicon surface, which is responsible for the increase of photon emission. In addition, the radiative dissociation process and breaking of chemical bond seems contribute to the enhancement of emitted photons intensity.  相似文献   

18.
In this study, we design, prepare and characterize a broadband, ultra-low reflectivity and incidence angle-insensitive metamaterial absorber. The design of this absorber not only provides a novel idea for the design of broadband absorbers, but also enhances the application prospects of metamaterial absorbers. By introducing FeSiAlp/epoxy magnetic composite and optimizing the structural parameters, the absorption performance of the metamaterial absorber has been significantly improved. The effective absorption bandwidth (bandwidth with reflectivity less than −10dB) is increased by 3.4 times from 2.19 GHz to 7.49 GHz, and the RLmin (minimum reflection loss) value reaches −38.31 dB at 17.83 GHz, that is the absorption rate reaches 99.99%. Meanwhile, the experimental results also verify the simulation design results. Therefore, the absorber not only plays the characteristics of strong absorption of metamaterial, but also absorbs the advantages of broadband of magnetic material.  相似文献   

19.
This Letter demonstrates improved passivating contacts for silicon solar cells consisting of doped silicon films together with tunnelling dielectric layers. An improvement is demonstrated by replacing the commonly used silicon oxide interfacial layer with a silicon nitride/silicon oxide double interfacial layer. The paper describes the optimization of such contacts, including doping of a PECVD intrinsic a‐Si:H film by means of a thermal POCl3 diffusion process and an exploration of the effect of the refractive index of the SiNx. The n+ silicon passivating contact with SiNx /SiOx double layer achieves a better result than a single SiNx or SiOx layer, giving a recombination current parameter of ~7 fA/cm2 and a contact resistivity of ~0.005 Ω cm2, respectively. These self‐passivating electron‐selective contacts open the way to high efficiency silicon solar cells. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
王利  张晓丹  杨旭  魏长春  张德坤  王广才  孙建  赵颖 《物理学报》2014,63(2):28801-028801
将自行研制的具有优异陷光能力的掺硼氧化锌用作p-i-n型非晶硅太阳电池的前电极,并且将传统商业用U型掺氟二氧化锡作为对比电极.相比表面较为平滑的掺氟二氧化锡,掺硼氧化锌表面大类金字塔的绒面结构会在本征层生长过程中触发阴影效应,形成大量的高缺陷材料区和漏电沟道,进而恶化电池的开路电压和填充因子.在不修饰掺硼氧化锌表面形貌的情况下,通过调节非晶硅本征层的沉积温度来消弱高绒度表面形貌引起的这种不利影响,对应的电池开路电压和填充因子均出现提升.在仅有铝背电极的情况下,在本征层厚度为200 nm的情况下,以掺硼氧化锌为前电极的非晶硅太阳电池转换效率达7.34%(开路电压为0.9 V,填充因子为70.1%,短路电流密度11.7 mA/cm2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号