首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
郭飞  杜红亮  屈绍波  夏颂  徐卓  赵建峰  张红梅 《物理学报》2015,64(7):77801-077801
本文设计了一种基于磁/电介质混合型基体的宽带超材料吸波体, 吸波体基本单元由电阻膜、磁/电介质混合型基体以及金属背板组成. 采用时域有限差分法对超材料吸波体吸波性能进行了仿真, 使用遗传算法优化了反射率小于-10 dB的带宽. 仿真结果表明, 当超材料吸波体厚度为2.5 mm时, 在7.8–18 GHz频率范围内的反射率小于-10 dB, 具有厚度薄、宽带、极化不敏感等优点. 通过等效电路模型对其工作机理进行了分析与讨论. 最后制备样品进行测试, 测试结果与仿真结果一致.  相似文献   

2.
Wenbo Cao 《中国物理 B》2022,31(11):117801-117801
A pure dielectric metamaterial absorber with broadband and thin thickness is proposed, whose structure is designed as a periodic cross-hole array. The pure dielectric metamaterial absorber with high permittivity is prepared by ceramic reinforced polymer composites. Compared with those with low permittivity, the absorber with high permittivity is more sensitive to structural parameters, which means that it is easier to optimize the equivalent electromagnetic parameters and achieve wide impedance matching by altering the size or shape of the unit cell. The optimized metamaterial absorber exhibits reflection loss below -10 dB in 7.93 GHz-35.76 GHz with a thickness of 3.5 mm, which shows favorable absorption properties under the oblique incidence of TE polarization (±45°). Whether it is a measured or simulated value, the strongest absorbing peak reaches below -45 dB, which exceeds that of most metamaterial absorbers. The distributions of power loss density and electric and magnetic fields are investigated to study the origin of their strong absorbing properties. Multiple resonance mechanisms are proposed to explain the phenomenon, including polarization relaxation of the dielectric and edge effects of the cross-hole array. This work overcomes the shortcomings of the narrow absorbing bandwidth of dielectrics. It demonstrates that the pure dielectric metamaterial absorber with high permittivity has great potential in the field of microwave absorption.  相似文献   

3.
熊益军  王岩  王强  王春齐  黄小忠  张芬  周丁 《物理学报》2018,67(8):84202-084202
设计了一种三层宽频吸波超材料,其表层和中间层为单元尺寸不同的周期阵列结构,底层为吸波平板结构,优化后的总厚度仅为4.7 mm,并采用三维(3D)打印技术成功制备了该吸波超材料.吸波体反射率测试结果表明,在电磁波垂直入射条件下,宽频吸收峰分别出现在5.3和14.1 GHz,两峰叠加使得其在4-18 GHz频率范围内反射损耗均小于-10 dB.采用S参数反演法计算了每一层的等效电磁参数,并利用多层结构反射率公式推导得出该模型的理论反射率,理论计算结果与实测结果基本一致.通过研究能量损耗、电场分布和磁场分布揭示了吸波机理,分析表明该吸波体的宽频吸收效果源于三层结构产生的吸收带宽叠加.本文提出的吸波超材料具有良好的宽频吸收效果,尤其在低频范围吸波性能较佳,结合3D打印快速成型技术,可获得结构精细的三层吸波超材料,具有重要的实际应用价值和广阔的应用前景.  相似文献   

4.
The design of a frequency selective surface (FSS) screen constructed using a coupling configuration to implement a broadband microwave absorber is presented in this paper. The reflectivity representation recognizes the characterization of the absorber. Simulation and measurement results are presented and analyzed. A coupling FSS screen is introduced in order to obtain a better bandwidth and absorption. The bandwidth with the reflectivity below ?10?dB could get 5.45?C18?GHz, compared with the 6.28?C18?GHz of the absorber with square patches FSS, provided that the thickness of the absorber is 4?mm.  相似文献   

5.
The design, fabrication, and measurements of a broadband metamaterial absorber are reported. The proposed metamaterial absorber consists of circular metallic patches and a metallic ground plane separated by a dielectric layer. Increasing the number of metallic patches can broaden the frequency range when their resonances are closely packed together, thereby resulting in a broadband resonance. Experimental results show that the proposed absorber has high absorptivity, with a full width at half maximum absorption bandwidth of 2.8 GHz and the relative FWHM absorption bandwidth of 25.3?%. In addition, the absorber can operate at a wide range of incident angles under both transverse electric and transverse magnetic polarizations.  相似文献   

6.
鲁磊  屈绍波  马华  余斐  夏颂  徐卓  柏鹏 《物理学报》2013,62(10):104102-104102
仿真并实验验证了基于电磁谐振的极化无关透射吸收超材料吸波体, 该吸波体可以实现低频透射和高频吸收.实验测试结果表明, 该吸波体在6.77 GHz 吸收率峰值为83.6%, 半功率带宽为4.3%, 实现窄带强吸收.为进一步拓展该谐振型超材料吸波体的吸收带宽, 利用其低频透射特性, 将两个工作于不同频段的吸波体叠加在一起, 测试结果表明, 复合后超材料吸波体的半功率带宽可以增大到10.9%, 吸收率也略有增强. 该超材料吸波体设计简单, 具有较强的实用性和应用前景. 关键词: 极化无关 透射吸收 超材料吸波体  相似文献   

7.
宽带透射吸收极化无关超材料吸波体   总被引:2,自引:0,他引:2       下载免费PDF全文
鲁磊  屈绍波  施宏宇  张安学  夏颂  徐卓  张介秋 《物理学报》2014,63(2):28103-028103
提出了一种新的基于磁性吸波体材料的具有低频透射和高频宽带吸收特性的超材料吸波体.该超材料吸波体在1 GHz的透射系数为-0.5 dB,具有较好的低频透射特性,可以实现对低频信号的相互通信;在频率大于8.4 GHz的频段,吸收率均大于80%,基本覆盖整个X波段和Ku波段,实现高频宽带吸收.此外,由于该超材料吸波体的单元金属周期结构具有较好的四重旋转对称性,因而是极化无关的.该透射吸收超材料吸波体设计简单,实用性强,具有较强的潜在应用价值.  相似文献   

8.
Broadband terahertz metamaterial absorbers have attracted considerable attention due totheir significant potential for practical applications. These absorbers are usuallystacked in several differently shaped or sized subunits to form a unit cell, making theirfabrication quite troublesome. A simple design for broadband metamaterial absorbers istherefore urgently needed. Herein, we propose a coplanar broadband andpolarisation-insensitive perfect absorber formed by two patterned square metallic ringswith a dielectric layer on top of a metallic ground plane. The full width at half maximum(FWHM) of the device can be up to 42% (with respect to the central frequency), which is 2times greater than that of a single-layered structure. This property is retained well fora very wide range of incident angles. The two patterned square rings resonating atdifferent but similar frequencies leads to the broadband absorption. Moreover, ahybridised resonance model is proposed to analyse the origin of the resonance bandwidth.The results of this metamaterial absorber design appear to be very promising for solarcell, detection and imaging applications.  相似文献   

9.
孙良奎  程海峰  周永江  王军 《中国物理 B》2012,21(5):55201-055201
An equivalent-circuit model is used to analyse the improvement of the wave absorbing performance of the lossy frequency selective surface(FSS) absorber by using a magnetic substrate,showing that it is possible to widen the wave absorbing bandwidth.Three pieces of magnetic substrates are prepared.According to the complex permittivity and permeability,the reflectivity of the corresponding absorber is calculated by the finite difference time-domain(FDTD) method,and the bandwidth of the reflectivity below 10 dB is optimized by genetic algorithm.The calculated results indicate that the wave absorbing performance is significantly improved by increasing the complex permeability of the substrate;the reflectivity bandwidth below 10 dB of the single layer FSS absorber can reach 3.6-18 GHz with a thickness of 5 mm,which is wider than that with a dielectric substrate.The density of the FSS absorber is only 0.92 g/cm 3.Additionally,the absorption band can be further widened by inserting a second lossy FSS.Finally,a double layer lossy FSS absorber with a magnetic substrate is fabricated based on the design result.The experimental result is consistent with the design one.  相似文献   

10.
李建  文光俊  黄勇军  王平  孙元华 《物理学报》2013,62(8):87801-087801
针对在自由空间中测试超介质吸波材料的高复杂性及高成本特点, 实验研究了4种由电谐振单元构成的超介质吸波材料在X波段(8–12 GHz)矩形波导里的吸波性能. 实验结果表明, 此4种吸波材料在终端短路的矩形波导里显示出与其在自由空间中相似的吸波性能及吸波机理.据此, 进一步研究了基于超介质吸波材料的矩形波导匹配终端应用. 分析结果显示, 此种新型匹配终端具有结构紧凑、工作频段可简单控制、成本低等优点. 通过展宽超介质吸波材料的吸波频段可设计出宽频带的矩形波导匹配终端. 关键词: 电谐振单元 超介质 吸波材料 匹配终端  相似文献   

11.
A broadband and thin-layer microwave absorber is designed based on surface pattern design made by carbonyl iron and rubber composite. The bandwidth with reflection less than −10 dB covers the full X-band owing to two absorption peaks appeared simultaneously in both the simulation results and experimental results. In this work, the power loss and power flow diagram were present by CST simulation, which clearly explain the broadband absorption caused by double λ/4 matching absorption and interfacial scattering synergistic effect. A facile splicing method was provided to extend the absorption bandwidth for the magnetic absorbing materials.  相似文献   

12.
A tunable broadband metamaterial absorber is demonstrated at microwave frequencies in this paper.The metamaterial absorber is composed of ferrite slabs with large resonance beamwidths and a copper wire.The theoretical analysis for the effective media parameters is presented to show the mechanism for achieving the perfect absorptivity characteristic.The numerical results of transmission,reflectance,and absorptivity indicate that the metamaterial absorber exhibits a near perfect impedance-match to free space and a high absorptivity of 98.2% for one layer and 99.97% for two layers at 9.9 GHz.The bandwidth with the absorptivity above 90% is about 2.3 GHz.Moreover,the absorption band can be shifted linearly in a wide frequency range by adjusting the magnetic bias.This metamaterial absorber opens a way to prepare perfectly matched layers for engineering applications.  相似文献   

13.
程用志  聂彦  龚荣洲  郑栋浩  范跃农  熊炫  王鲜 《物理学报》2012,61(13):134101-134101
设计了三种类型吸波体, 分别为基于正方形金属贴片(square metal patch, SMP) 结构超材料吸波体、 电阻型频率选择表面(Resistance Frequency Selective Surface, RFSS) 吸波体和SMP与RFSS的复合结构吸波体. 采用FDTD算法分别对这三种类型吸波体的电磁波吸收特性进行数值模拟分析. 模拟得到的结果表明: 在整个2-30 GHz频率范围内, SMP吸波体, 通过几何参数的设计可以实现多频窄带强吸收; RFSS吸波体, 通过方块电阻的设计可以实现高频宽带强吸收, 但强吸收的带宽有限; SMP与RFSS的复合结构吸波体, 在3-25 GHz之间吸收率大于90%以上, 且宽频范围内与自由空间具有较好的阻抗匹配特性.  相似文献   

14.
We present the design, numerical simulations and experimental measurements of terahertz metamaterial absorbers with a broad and flat absorption top over a wide incidence angle range for either transverse electric or transverse magnetic polarization depending on the incident direction. The metamaterial absorber unit cell consists of two sets of structures resonating at different but close frequencies. The overall absorption spectrum is the superposition of individual components and becomes flat at the top over a significant bandwidth. The experimental results are in excellent agreement with numerical simulations.  相似文献   

15.
We report a metamaterial absorber (MA) with a broad absorption band in the frequency region of 2–4 GHz, whose thickness is not limited to the quarter-wavelength. Theoretical and experimental results show that the absorber has two adjacent absorption apexes at 2.24 and 3.46 GHz, respectively, which are both related to the electric and magnetic resonances of the metamaterial. The absorption is over 68% in the whole wave band of 2–4 GHz provided the thickness of 4 mm. The distributions of the surface currents and the power loss density indicate that the surface currents produced by the electric and magnetic resonances are strongly consumed by the resistive patches. This low-frequency absorber has potential applications in many scientific and martial fields.  相似文献   

16.
Low density and thin thickness are essential for electromagnetic (EM) wave absorbers. In this study, we fabricated a novel micro-tubular iron nanocomposite (MTIC) that composed of carbon microtubes and monodisperse iron nanoparticles (NPs). The bulk density of MTIC is only 0.35±0.04 g cm−3 due to its micro-tubular structure. The presence of iron NPs increased the magnetic loss significantly and therefore enhanced the reflection loss (RL) of MTIC/paraffin composite. The optimum thickness for the composite is 1.5-1.8 mm, with maximum bandwidth of 7.6 GHz for RL<−5 dB and 3.6 GHz for RL<−10 dB. The corresponding frequency at this thickness is 10-18 GHz. Because of low density and broad bandwidth at thin thickness, MTIC is a promising light-weight absorber for EM wave absorption or microwave shielding. This study will also provide new ideas for fabricating microwave absorbers with low density and thin thickness.  相似文献   

17.
李宇涵  邓联文  罗衡  贺龙辉  贺君  徐运超  黄生祥 《物理学报》2019,68(9):95201-095201
针对超材料吸波频带窄的问题,采用金属螺旋环超表面与碳纤维吸波材料相复合的方式,设计了宽频高性能复合吸波体.研究发现,在碳纤维吸波材料中引入双层螺旋环超表面能显著增强吸收峰值和吸波带宽,且适当增加螺旋环初始线长和吸收层厚度有利于提高复合吸波体的吸波性能, 9.2—18.0 GHz频段的反射损耗均优于–10 dB (带宽达8.8 GHz),吸收峰值达–14.4 dB.利用S参数计算得到螺旋环-碳纤维复合吸波体的等效电磁参数和特征阻抗呈现多频点谐振特性,通过构建双层螺旋环超表面等效电路模型,定量计算了复合吸波体的电磁谐振频点,发现由等效电路模型获得的谐振频点计算值与仿真值基本相符,说明该复合吸波体多频点电磁谐振是宽频电磁损耗的主要机制.  相似文献   

18.
太赫兹超材料吸收器作为一种重要的太赫兹功能器件,被广泛应用于生物医学传感、电磁隐身、军用雷达等多个领域.但这种传统的超材料吸收器结构具有可调谐性差、功能单一、性能指标不足等缺点,已经无法满足复杂多变的电磁环境的要求,因此可调谐超材料吸收器逐渐成为了太赫兹功能器件领域的研究热点.为实现超材料吸收器吸收特性的调谐,通常从调...  相似文献   

19.
Sol–gel method was used to prepare W-type BaCo2Fe16O27 hexaferrite and La-doped Ba0.7La0.3Co2Fe16O27 hexaferrite. Electromagnetic parameters of the ferrites and short carbon fiber composites were measured, and reflectivity was calculated according to transmission-line theory in the range 12.4–18 GHz. The results show that reflection loss of the doped ferrite composite is higher as compared to the no doped ferrite composite. Based on the above calculation, double-layer absorbers containing La-doped ferrite and carbon fiber composites were designed, and reflectivity of the double-layer absorbers made of different thickness and composition was calculated. Finally, a kind of structural absorber having excellent absorbing properties was achieved, and the bandwidth of the reflection loss less than −10 dB can reach 5.2 GHz in the range of 12.4–18 GHz.  相似文献   

20.
Ultra-broadband metamaterial absorbers have attracted considerable attention due to their great prospect for practical applications. These absorbers are usually stacked by many (no. <20) different shaped or sized subunits in a unit cell, making it quite troublesome to be fabricated. Simple design for ultra-broadband absorber is urgently necessary. Herein, we propose a simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber based on a double-layered composite structure on a metallic board, and each layer consists of two sets of different sized square metallic plates. Greater than 90 % absorption is obtained across a frequency range of 0.85 THz with the central frequency around 1.60 THz. The relative absorption bandwidth of the device is greatly improved to 53.3 %, which is much larger than previous results. The mechanism of the ultra-broadband absorber is attributed to the overlapping of four closely resonance frequencies. The proposed metamaterial absorber has potential applications in detection, imaging and stealth technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号