首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
探索了 X射线照片密度与显微密度计信号电压之间的关系。利用曲线拟合得到了 X射线照片光密度与输出电压关系的公式。经公式计算的密度值与实测密度值之间差别不大 ,其标准估计误差为 0 .0 178,完全可以用计算密度值来代替实测密度值。直接取其显微密度计输出的电信号 ,经公式转换成光学密度值后再进行 X射线照片的各种性能测试 ,避免了部分测试和换算误差 ,克服了过去密度测量的不便 ,提高了效率  相似文献   

2.
利用智能手机中的Phyphox软件设计了2个声学实验,即声音的频谱显示和验证声压级与距离的关系,详述了在声音的频谱显示实验中如何直观显示声音的3要素,在探究声压级与距离关系的实验中如何测量不同距离的声压级,然后将实验数据拟合成图线,验证理论公式.  相似文献   

3.
非均匀桨直升机旋翼厚度噪声分析   总被引:1,自引:0,他引:1  
分析了桨叶间距非均匀调制对直升机旋翼厚度噪声的影响.桨叶间距按照正弦调制和余弦调制变化时,根据FW-H方程的Formulation 1A公式,计算了直升机悬停状态下的旋翼厚度噪声.桨尖速度为亚音速时的计算结果显示,与桨叶间距均匀的直升机旋翼厚度噪声相比,非均匀桨可以改变厚度噪声的频谱特征,而且在基本保持厚度噪声总声压级不变情况下,降低厚度噪声桨叶通过频率及谐频的线谱幅值.本文的分析和结果有助于认识非均匀旋翼厚度噪声的频谱变化规律.  相似文献   

4.
蒋达大 《应用声学》1991,10(2):11-14
对于增压式换能器,由其等效集中参数表达的谐振频率公式,经过一些数学简化和实验结果的结合,得到了适合工程计算的简单公式.同时给出了公式的应用范围.对于多种增压式换能器的实测数据表明:计算值和实验值符合得较好.  相似文献   

5.
本文得到两维衍射的积分公式,并数字计算了线条的两维光强分布.提出了简化的方角图形传递模型.经投影光学系统的方角图形的圆角半径计算值与实测结果一致.  相似文献   

6.
马小亮  杨国伟 《计算物理》2010,27(3):375-380
采用基于Menter SST两方程湍流模型的DES方法,数值模拟开式凹腔在跨声速条件下的非定常流动特性.计算凹腔底部和后壁面上的点的声压级频谱以及总声压级,证明在第二噪声模态上的声压级最大.  相似文献   

7.
采用“虚源法”分析计算了浅海波导环境中接收点处点源总振速方向与水平面夹角,侧重讨论确定性界面反射对总振速方向的影响。研究结果表明:总振速方向和接收点与声源的水平距离、两者深度,海底、海面特性以及声速剖面等有关。在等声速均匀浅海波导中,由于确定性界面反射的影响,当直达声掠射角为1°~50°时,合成总振速方向偏离直达声方向达1.5°~10.5°,声速剖面呈负梯度时,偏离程度更甚.  相似文献   

8.
串联谐振充电电源分析及设计   总被引:19,自引:10,他引:19       下载免费PDF全文
 推导了串联谐振充电电源不同工作模式下的电流、电压计算公式,给出了计算不同周期电流、电压值的递推公式;应用递推公式说明了这种电源的脉动恒流充电特性;给出了负载电容不完全放电情况下电源参数的计算方法。在负载电容完全放电的情况下,电源的平均输出功率为最大输出功率的一半,在负载电容电压基本维持恒定的情况下,电源平均输出功率与最大输出功率相等;最后给出了一台为Tesla型加速器初级储能电容充电的谐振电源的设计实例,电源的实测结果和计算结果一致,在100Hz重复频率下运行稳定可靠。  相似文献   

9.
频散瑞利波纵向衰减规律研究   总被引:1,自引:1,他引:0  
理论推导了有液体层时瑞利波能量沿纵向的衰减公式,利用在金属铝板中的方形人工槽进行了相应超声实验验证,理论计算值与实验值吻合较好,并实验证实了有液体层时与无液体层时瑞利波速的差别,讨论了瑞利波衰减规律在实际检测中的作用.  相似文献   

10.
 主要研究了阴阳极等离子体运动对“闪光二号”加速器强箍缩离子束二极管束流特性的影响。给出了考虑阴阳极产生的等离子体运动对二极管间隙影响的Child-langmuir流、弱聚焦流、强聚焦流和饱和顺位流4个阶段的离子流和二极管总束流修正公式,利用这些修正公式计算的二极管总束流和离子束流强度与实测结果符合很好,在此基础上分析了提高离子束流强度和效率的方法,通过调整加速器参数,实验得到了峰值能量约500 keV,峰值电流约160 kA的高功率离子束。  相似文献   

11.
Many new criteria for good auditorium acoustics have been proposed in recent years. These criteria take into account the details of human perception of sound, as well as the physics of sound propagation—for example, the temporal and directional distribution of reflected sounds received binaurally is thought to be very important. However, many seats in well-known auditoria have inadequate sightlines and thus people sitting in them lack direct sound components. Since it is the direct sound that gives information regarding the temporal sequence and location of sound sources, and, to some extent, also determines the ability to perceive subsequent reflected sound components, it is essential that all seats in an auditorium should have good sightlines and thus direct soundlines.  相似文献   

12.
I.IntroductionLoudnessisoneofthedistinguishingcharactcristicsamonga1lacousticcriteriainauditori-umdesign.Insufficientorsevcrcunevendistributionofloudncsscausesseriousdeficiencytoauditoriumacoustics.Duetothelackofappropriateparamcter,thereisnowayeithertopre-dictloudnessinanauditoriumduringthedcsignstagc,ortochccktheactua1effectafterthecomp1etionoftheconstruction.Wca1lmighthavethcexpcricnccasanaudiencethatthestagcattractedmoreofourcon-ccntrationduringthesoftpassagcofthcpcrformance,whercaswewcre…  相似文献   

13.
本文介绍伪随机扩散体吸声性能的应用,提出减少扩散体结构厚度的实用设计,并应用于剧场观众厅以减少混响时间.  相似文献   

14.
In several auditoria, it has been observed that the reverberation time is longer than expected and that the cause is a horizontal reverberant field established in the region near the ceiling, a field which is remote from the sound absorbing audience. This has been observed in the Boston Symphony Hall, Massachusetts, and the Stadthalle Göttingen, Germany. Subjective remarks on their acoustics suggest that there are no unfavourable comments linked to the secondary sound field. Two acoustic scale models are considered here. In a generic rectangular concert hall model, the walls and ceiling contained openings in which either plane or scattering panels could be placed. With plane panels, the model reverberation time (RT) was measured as 53% higher than the Sabine prediction (frequency 500/1000 Hz), compared with 8% higher with scattering panels. The second model of a 300 seat lecture theatre with a 6 m or 8 m high ceiling had raked seating. In this case, the amount of absorption in the model was increased until the point was reached where speech had acceptable intelligibility, with the early energy fraction, D ? 0.5. For this acceptable speech condition with the 6 m ceiling, the measured mid-frequency T15 was 1.47 s, whereas the Sabine predicted RT was 1.06 s. The sound decay was basically non-linear with T30 > T15 > EDT. Exploiting a high-level horizontal reverberant field offers the possibility of acoustics that are better adapted as suitable for both speech and unamplified music, without any physical change in the auditorium. Using secondary reverberation in an auditorium for a wide variety of music might also be beneficial.  相似文献   

15.
The spatial and temporal distribution of early reflections in an auditorium is considered important for sound perception. Previous studies presented measurement and analysis methods based on spherical microphone arrays and plane-wave decomposition that could provide information on the direction and time of arrival of early reflections. This paper presents recent results of room acoustics analysis based on a spherical microphone array, which employs high spherical harmonics order for improved spatial resolution, and a dual-radius spherical measurement array to avoid ill-conditioning at the null frequencies of the spherical Bessel function. Spatial-temporal analysis is performed to produce directional impulse responses, while analysis based on the windowed Fourier transform is employed to detect direction of arrival of individual reflections at selected frequencies. Experimental results of sound-field analysis in a real auditorium are also presented.  相似文献   

16.
In many practical situations the assumption of sound field dispersion needed for the application of the Sabine’s theory is not fulfilled. In general, sound field is sufficiently dispersed if there are no large differences in the dimensions of the room, limiting partitions are not parallel, or the sound absorbing material is uniformly distributed. In practice, very few of these requirements are satisfied. As a result, a number of other formulas describing reverberation time have been created, for example Fitzroy’s or Neubauer’s formulas. However, these methods in many cases differ significantly from the actual measurements. The paper presents a method used to estimate reverberation time as well as its applicability potential involving laboratory models and auditorium rooms. The proposed method can be classified into a group of learning methods and involves the use of statistical methods which allow for approximation with the use of the least squares method.  相似文献   

17.
中国筝的声功率级测试   总被引:2,自引:2,他引:0       下载免费PDF全文
筝是中国古老的弹弦乐器。但迄今为止,对其声功率级一直未进行科学的测定。本文在一混响室内根据ISO及GB标准,对二十一弦筝的声功率级进行了首次测定。两位资深乐师在混响室内分别演奏各自的乐器,通过围绕乐师和乐器布置的四通道测试设备,对筝所辐射的声功率级和动态范围进行测定。测试结果表明,中国筝在以不同力度演奏单音、音阶和乐曲时所辐射的声功率级及其频率特性均有所不同。考虑到乐器演奏音阶时所辐射的声功率级及其动态范围与演奏乐曲时的声功率级接近,并且,音乐的空间感也大都在乐器以f力度演奏乐曲的强音标志乐段时最为显著,故此我们建议中国筝所辐射的声功率级用其以f力度演奏音阶时的平均声功率级表示。本文测试的两架中国筝以f力度演奏音阶时的平均声功率级为85.9dB。文中不仅首次公布了中国筝声功率级的测试结果,并且所介绍的测试方法对其它乐器声功率级测试也具有借鉴意义。民族乐器所辐射的声音性能的确定是民族音乐厅堂音质研究的基础。  相似文献   

18.
Mike Barron 《Applied Acoustics》2012,73(11):1185-1189
One of the surprises from analysis of results of an objective and subjective study of British concert halls (1988 Acustica 66, 1–14) was that the subjective judgement of loudness in concert halls is influenced not only by sound level but also by the source–receiver distance. This response implies that the same sound level is judged louder at positions further from the orchestra platform. Whereas level decreases with distance in actual halls, loudness is judged more-or-less independent of position in average halls (except at positions close to the platform and seats overhung by balconies). As an observation it ties in with evidence from experimental psychologists for loudness constancy throughout a space. The sound strength G is the sound level in an auditorium normalised to the sound power level of the source; the traditional criterion of acceptability for level is that G ? 0 dB. The paper proposes that, on the basis of subjective evidence and objective behaviour in auditoria, the criterion for G should not be a unique value of G but rather a function of source–receiver distance.  相似文献   

19.
Vocal directivity refers to how directional the sound is that comes from a singer's mouth, that is, whether the sound is focused into a narrow stream of sound projecting in front of the singers or whether it is spread out all around the singer. This study investigates the long-term vocal directivity and acoustic power of professional opera singers and how these vary among subjects, among singing projections, and among vastly different acoustic environments. The vocal sound of eight professional opera singers (six females and two males) was measured in anechoic and reverberant rooms and in a recital hall. Subjects sang in four different ways: (1) paying great attention to intonation; (2) singing as in performance, with all the emotional connection intended by the composer; (3) imagining a large auditorium; and (4) imagining a small theatre. The same song was sung by all singers in all conditions. A head and torso simulator (HATS), radiating sound from its mouth, was used for comparison in all situations. Results show that individual singers have quite consistent long-term average directivity, even across conditions. Directivity varies substantially among singers. Singers are more directional than the standard HATS (which is a physical model of a talking person). The singer's formant region of the spectrum exhibits greater directivity than the lower-frequency range, and results indicate that singers control directivity (at least, incidentally) for different singing conditions as they adjust the spectral emphasis of their voices through their formants.  相似文献   

20.
基于BDRM理论的深海声场快速预报研究   总被引:2,自引:1,他引:2       下载免费PDF全文
张林  笪良龙  卢晓亭 《应用声学》2007,26(4):239-243
深海存在深海声道和双轴声道两种典型环境,WKBZ简正波方法已实现了深海声道中声场的快速准确预报,而对于双轴海洋声道则存在一定的误差。本文在WKBZ本征函数的基础上,推导出了参考界面相位修正的一致表达式,并将浅海声传播的波束位移射线简正波(BDRM)理论应用于计算双轴海洋声道中的声场,进行了数值模拟并与传统简正波方法进行比较,结果表明应用BDRM理论计算的传播损失具有很高的精度和速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号