首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A key to ultralong electron spin memory in quantum dots (QDs) at zero magnetic field is the polarization of the nuclei, such that the electron spin is stabilized along the average nuclear magnetic field. We demonstrate that spin-polarized electrons in n-doped (In,Ga)As/GaAs QDs align the nuclear field via the hyperfine interaction. A feedback onto the electrons occurs, leading to stabilization of their polarization due to formation of a nuclear spin polaron [I. A. Merkulov, Phys. Solid State 40, 930 (1998)]. Spin depolarization of both systems is consequently greatly reduced, and spin memory of the coupled electron-nuclear spin system is retained over 0.3 sec at temperature of 2 K.  相似文献   

2.
Time-resolved picosecond spectroscopy is used for the first time to study optical orientation and spin dynamics of carriers in self-organized In(Ga)As/GaAs quantum-dot (QD) arrays. Optical orientation of carriers created by 1.2 ps light pulses, both in the GaAs matrix and wetting layer, and captured by QDs is found to last a few hundreds of picosecond. The saturation of electron ground state at high-excitation-light intensity leads to electron polarization in excited states close to 100% and to its vanishing in ground state. Electron-spin quantum beats in a transverse magnetic field are observed for the first time in semiconductor QDs. We thus determine the quasi-zero-dimensional electron g factor in In0.5Ga0.5As/GaAs QDs to be: |g |=0.27±0.03. Fiz. Tverd. Tela (St. Petersburg) 41, 871–874 (May 1999) Published in English in the original Russian journal. Reproduced here with stylistic changes by the Translation Editor.  相似文献   

3.
Quantum dots (QDs) have a potential for application in semiconductor optical amplifiers (SOAs), due to their high saturation power related to the low differential gain, fast gain recovery and wide gain spectrum compared to quantum wells. Besides all advantages, QDs realized by Stranski-Krastanov growth mode have a flat shape which leads to a gain anisotropy and a related transverse magnetic (TM) and -electric (TE) polarization dependence as compared to bulk material. This has so far prevented their applications in SOAs. It has been suggested that control of optical polarization anisotropy of the QD can be obtained through QD shape engineering, in closely stacked or columnar QDs (CQDs). To this aim, we have fabricated and tested SOA structures based on closely-stacked and columnar QDs. Closely-stacked InAs QDs with 4, 6 and 10 nm GaAs spacer showed a minor improvement in the ratio of TM and TE integrated electroluminescence (EL) over standard QDs along with a strong reduction in efficiency. In contrast, a large improvement was obtained in CQDs, depending on the number of stacked submonolayers which can be attributed to the more symmetric shape of columnar QDs. A relatively small spectral separation (ΔE ~ 21 meV) between TE- and TM-EL peaks has been observed showing that heavy- and light hole-like states, respectively are energetically close in these QDs. These results indicate that columnar QDs have a significant potential for polarization-independent QD SOA.  相似文献   

4.
This work presents an overview of investigations of the nuclear spin dynamics in nanostructures with negatively charged InGaAs/GaAs quantum dots characterized by strong quadrupole splitting of nuclear spin sublevels. The main method of the investigations is the experimental measurements and the theoretical analysis of the photoluminescence polarization as a function of the transverse magnetic field (effect Hanle). The dependence of the Hanle curve profile on the temporal protocol of optical excitation is examined. Experimental data are analyzed using an original approach based on separate consideration of behavior of the longitudinal and transverse components of the nuclear polarization. The rise and decay times of each component of the nuclear polarization and their dependence on transverse magnetic field strength are determined. To study the role of the Knight field in the dynamic of nuclear polarization, a weak additional magnetic field parallel to the optical axis is used. We have found that, only taking into account the nuclear spin fluctuations, we can accurately describe the measured Hanle curves and evaluate the parameters of the electron–nuclear spin system in the studied quantum dots. A new effect of the resonant optical pumping of nuclear spin polarization in an ensemble of the singly charged (In,Ga)As/GaAs quantum dots subjected to a transverse magnetic field is discussed. Nuclear spin resonances for all isotopes in the quantum dots are detected in that way. In particular, transitions between the states split off from the ±1/2 doublets by the nuclear quadrupole interaction are identified.  相似文献   

5.
The spin polarization of current injected into GaAs from a CoFe/MgO(100) tunnel injector is inferred from the electroluminescence polarization from GaAs/AlGaAs quantum well detectors. The polarization reaches 57% at 100 K and 47% at 290 K in a 5 T perpendicular magnetic field. Taking into account the field dependence of the luminescence polarization, the spin injection efficiency is at least 52% at 100 K, and 32% at 290 K. We find a nonmonotonic temperature dependence of the polarization which can be attributed to spin relaxation in the quantum well detectors.  相似文献   

6.
We propose and demonstrate a technique for electrical detection of polarized spins in semiconductors in zero applied magnetic fields. Spin polarization is generated by optical injection using circularly polarized light which is modulated rapidly using an electro-optic cell. The modulated spin polarization generates a weak time-varying magnetic field which is detected by a sensitive radio-frequency coil. Using a calibrated pickup coil and amplification electronics, clear signals were obtained for bulk GaAs and Ge samples from which an optical spin orientation efficiency of 4.8% could be determined for Ge at 1342 nm excitation wavelength. In the presence of a small external magnetic field, the signal decayed according to the Hanle effect, from which a spin lifetime of 4.6±1.0 ns for electrons in bulk Ge at 127 K was extracted.  相似文献   

7.
李天信  翁钱春  鹿建  夏辉  安正华  陈张海  陈平平  陆卫 《物理学报》2018,67(22):227301-227301
半导体量子点是研究光子与电子态相互作用的优选固态体系,并在光子探测和发射两个方向上展现出独特的技术机遇.其中基于量子点的共振隧穿结构被认为在单光子探测方面综合性能最佳,但受到光子数识别、工作温度两个关键性能的制约.利用腔模激子态外场耦合效应,有望获得圆偏振态可控的高频单光子发射.本文介绍作者提出的量子点耦合共振隧穿(QD-cRTD)的光子探测机理,利用量子点量子阱复合电子态的隧穿放大,将QD-cRTD光子探测的工作温度由液氦提高至液氮条件,光电响应的增益达到107以上,并具备双光子识别能力;同时,由量子点能级的直接吸收,原型器件获得了近红外的光子响应.在量子点光子发射机理的研究方面,作者实现了量子点激子跃迁和微腔腔模共振耦合的磁场调控,在Purcell效应的作用下增强激子自旋态的自发辐射速率,从而增强量子点中左旋或右旋圆偏振光的发射强度,圆偏度达到90%以上,形成一种光子自旋可控发射的新途径.  相似文献   

8.
We investigate electrically induced spin currents generated by the spin Hall effect in GaAs structures that distinguish edge effects from spin transport. Using Kerr rotation microscopy to image the spin polarization, we demonstrate that the observed spin accumulation is due to a transverse bulk electron spin current, which can drive spin polarization nearly 40 microns into a region in which there is minimal electric field. Using a model that incorporates the effects of spin drift, we determine the transverse spin drift velocity from the magnetic field dependence of the spin polarization.  相似文献   

9.
The spin configuration of the ground state of a two-dimensional electron system is investigated for different FQHE states from an analysis of circular polarization of time-resolved luminescence. The method clearly distinguishes between fully spin polarized, partially spin polarized and spin unpolarized FQHE ground states. We demonstrate that FQHE states which are spin unpolarized or partially polarized at low magnetic fields become fully spin polarized at high fields. Temperature dependence of the spin polarization reveals a nonmonotonic behavior at . At and the electron system is found to be fully spin polarized. This result does not indicate the existence of any skyrmionic excitations in high magnetic field limit. However, at the observed spin depolarization of electron system at and becomes broader for lower magnetic fields, so that full spin polarization remains only in a small vicinity of . Such a behavior could be considered as a precursor of skirmionic depolarization, which would dominate for smaller ratios between Zeeman and Coulomb energies.We demonstrate that the spin polarization of 2D-electron system at and can be strongly affected by hyperfine interaction between electrons and optically spin-oriented nuclears. This result is due to the fact that hyperfine interaction can both enhance and suppress effective Zeeman splitting in fixed external magnetic field.  相似文献   

10.
Spin injection processes from a Zn0.80Mn0.20Se diluted magnetic semiconductor (DMS) to adjacent self-assembled CdSe quantum dots (QDs) were investigated by cw and time-resolved magneto-optical spectroscopy in combination with tunable laser excitation. Direct experimental evidence for the spin injection was provided from the generation of the spin polarization in the QDs, which was opposite to their expected intrinsic polarization, by resonantly generating the spins in the DMS. The observed limited spin polarization generated by the spin injection, together with the sensitivity of the spin injection efficiency on structure design, indicates severe spin loss during the process and calls for further investigations to optimize spin injection efficiency in quantum structures.  相似文献   

11.
We have studied a double-layer self-assembled quantum dot (QD) structures consisting of non-magnetic CdSe and magnetic CdMnSe. Transmission electron microscopy image shows that QDs are formed within the CdSe and CdMnSe layers, and they are vertically correlated in the system. The strong interband ground state transition was observed in magneto-photoluminescence (PL) experiments. In contrast to a typical behavior for many low-dimensional systems involving diluted magnetic semiconductors (DMSs), where PL signal dramatically increases when an external magnetic field is applied, we have observed a significant decrease of the PL intensity as a function of magnetic field in the double-layer structures where the alternating QD layers contain the DMS and non-DMS QDs. We attribute such effect to carrier transfer from non-magnetic CdSe dots to magnetic CdMnSe dots due to the large Zeeman shift of the band edges of DMS QDs in magnetic field. Since the band alignment of QD structure strongly depends on the spin states of system, we performed polarization-selective PL measurement to identify spin-dependent carrier tunneling in this coupled system.  相似文献   

12.
We investigate the low-energy electronic structure of a Weyl semimetal quantum dot(QD) with a simple model Hamiltonian with only two Weyl points. Distinguished from the semiconductor and topological insulator QDs, there exist both surface and bulk states near the Fermi level in Weyl semimetal QDs. The surface state, distributed near the side surface of the QD, contributes a circular persistent current, an orbital magnetic moment, and a chiral spin polarization with spin-current locking. There are always surface states even for a strong magnetic field, even though a given surface state gradually evolves into a Landau level with increasing magnetic field. It indicates that these unique properties can be tuned via the QD size. In addition, we show the correspondence to the electronic structures of a three-dimensional Weyl semimetal, such as Weyl point and Fermi arc. Because a QD has the largest surface-to-volume ratio, it provides a new platform to verify Weyl semimetal by separating and detecting the signals of surface states. Besides, the study of Weyl QDs is also necessary for potential applications in nanoelectronics.  相似文献   

13.
Optical characterization of single quantum dots (QDs) by means of micro-photoluminescence (μPL) will be reviewed. Both QDs formed in the Stranski–Krastanov mode as well as dots in the apex of pyramidal structures will be presented. For InGaAs/GaAs dots, several excitonic features with different charge states will be demonstrated. By varying the magnitude of an external electric or magnetic field and/or the temperature, it has been demonstrated that the transportation of carriers is affected and accordingly the charge state of a single QD can be tuned. In addition, we have shown that the charge state of the QD can be controlled also by pure optical means, i.e. by altering the photo excitation conditions. Based on the experience of the developed InAs/GaAs QD system, similar methods have been applied on the InGaN/GaN QD system.  相似文献   

14.
The article discusses some of the recent results on semiconductor quantum dots with magnetic impurities. A single Mn impurity incorporated in a quantum dot strongly changes the optical response of a quantum-dot system. A character of Mn-carrier interaction is very different for II-VI and III-V quantum dots (QDs). In the II-VI QDs, a Mn impurity influences mostly the spin-structure of an exciton. In the III-V dots, a spatial localization of hole by a Mn impurity can be very important, and ultimately yields a totally different spin structure. A Mn-doped QD with a variable number of mobile carriers represents an artificial magnetic atom. Due to the Mn-carrier interaction, the order of filling of electronic shells in the magnetic QDs can be very different to the case of the real atoms. The “periodic” table of the artificial magnetic atoms can be realized in voltage-tunable transistor structures. For the electron numbers corresponding to the regime of Hund's rule, the magnetic Mn-carrier coupling is especially strong and the magnetic-polaron states are very robust. Magnetic QD molecules are also very different to the real molecules. QD molecules can demonstrate spontaneous breaking of symmetry and phase transitions. Single QDs and QD molecules can be viewed as voltage-tunable nanoscale memory cells where information is stored in the form of robust magnetic-polaron states. To cite this article: A.O. Govorov, C. R. Physique 9 (2008).  相似文献   

15.
We studied optical and electron transport properties of coupled InAs quantum dots (QDs) embedded in GaAs. Photoluminescence (PL) from the high dot density samples indicated asymmetry in the PL spectra when the ambient temperature is lower than about 50 K. Comparing this result with theoretical calculations, it is shown that this phenomenon is explained by the inter-dot electronic coupling effect. In the photo-conductance measurement, resonance peaks in the current–voltage characteristics were observed in the low-temperature region. The dependence of the resonance voltage on the magnetic field intensity was studied to extract the g-factor. It is also shown that the resonances are attributed to the current corresponding to the electron transport through QDs. According to these results, it is concluded that the inter-dot electronic coupling in the self-assembled InAs/GaAs QD systems occurs when the inter-dot spacing is as low as several nanometers and the ambient temperature is less than about 50 K.  相似文献   

16.
While efficient nuclear polarization has earlier been reported for the charged exciton in InAs/GaAs quantum dots at zero external magnetic field, we report here on a surprisingly high degree of circular polarization, up to ≈60%60%, for the neutral exciton emission in individual InAs/GaAs dots. This high degree of polarization is explained in terms of the appearance of an effective nuclear magnetic field which stabilizes the electron spin. The nuclear polarization is manifested in experiments as a detectable Overhauser shift. In turn, the nuclei located inside the dot are exposed to an effective electron magnetic field, the Knight field. This nuclear polarization is understood as being due to the dynamical nuclear polarization by an electron localized in the QD. The high degree of polarization for the neutral exciton is also suggested to be due to separate in-time capture of electrons and holes into the QD.  相似文献   

17.
尚向军  马奔  陈泽升  喻颖  查国伟  倪海桥  牛智川 《物理学报》2018,67(22):227801-227801
介绍了自组织量子点单光子发光机理及器件研究进展.主要内容包括:半导体液滴自催化外延GaAs纳米线中InAs量子点和GaAs量子点的单光子发光效应、自组织InAs/GaAs量子点与分布布拉格平面微腔耦合结构的单光子发光效应和器件制备,单量子点发光的共振荧光测量方法、量子点单光子参量下转换实现的纠缠光子发射、单光子的量子存储效应以及量子点单光子发光的光纤耦合输出芯片制备等.  相似文献   

18.
We report on a photoreflectance investigation in the 0.8-1.5 eV photon energy range and at temperatures from 80 to 300 K on stacked layers of InAs/GaAs self-assembled quantum dots (QDs) grown by Atomic-Layer Molecular Beam Epitaxy. We observed clear and well-resolved structures, which we attribute to the optical response of different QD families. The dependence of the ground state transition energy on the number of stacked QD layers is investigated and discussed considering vertical coupling between dots of the same column. It is shown that Coulomb interaction can account for the observed optical response of QD families with different morphology coexisting in the same sample. Received 17 November 1999  相似文献   

19.
We have studied the electron spin relaxation in semiconductor InAs/GaAs quantum dots by time-resolved optical spectroscopy. The average spin polarization of the electrons in an ensemble of p-doped quantum dots decays down to 1/3 of its initial value with a characteristic time T(Delta) approximately 500 ps, which is attributed to the hyperfine interaction with randomly oriented nuclear spins. We show that this efficient electron spin relaxation mechanism can be suppressed by an external magnetic field as small as 100 mT.  相似文献   

20.
K. Hyomi 《Journal of luminescence》2009,129(12):1715-1717
We present a micro-photoluminescence (m-PL) study of electron-spin injection under magnetic fields in self-assembled semiconductor quantum dots (QDs) of CdSe. A characteristic band line-up of the CdSe QDs coupled with a diluted magnetic semiconductor quantum well (DMS-QW) of ZnCdMnSe through a ZnSe barrier layer enabled us to inject the electron spins from the DMS-QW into QDs. An experimental evidence of the electron-spin injection was provided by observations of circularly polarized m-PL spectra from individual QDs in this coupled QD structure. We find anti-correlation of PL intensity in between the DMS-QW (spin injector) and the individual QDs (spin receiver).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号