首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study theoretically the features of impurity-induced states on the surface of a three-dimensional Weyl semimetal in this work. For calculating the impurity-induced local density of states based on T-matrix formulation, we found that for different Weyl semimetal phases the behaviors of a local impurity exhibit distinguishable prominent features for the surface Fermi arc states. Due to two opposite-directional and -chirality surface currents for a surface, a bound state appears at the unitary limit of scattering intensity near the impurity site. Then the resonance condition for different Weyl semimetal phases and scattering intensity is investigated. Our results can be used to identify distinctive topological phases of Weyl semimetal. Furthermore, the relevance of topological nodal-point and -line systems is discussed. Some relation between our theoretical results and current experimental scheme are also discussed.  相似文献   

2.
《Physics letters. A》2020,384(19):126494
Magnetic topological materials have attracted increasingly attentions in recent years due to their exotic electronic behaviors emerging from the couplings of topological, magnetic, and crystalline symmetries. In this work, based on the first-principles calculations, we propose that hexagonal wurtzite MnO is a magnetic topological spin-gapless semi-half-metal with two pairs of type-I Weyl fermions near the Fermi level in ferromagnetic state, which is a promising candidate material in spintronic and piezoelectric applications. In the absence of spin-orbit coupling (SOC), it hosts one triple degeneracy point (TP) in the irreducible Brillouin zone. Owing to weak SOC, the TP splits into two type-I Weyl points that are very close to each other. The Fermi arc surface states connecting the projected Weyl points with opposite chirality are observed. Our results therefore provide a wonderful platform to study the interplay of magnetism and topology.  相似文献   

3.
Mingqi Chang 《中国物理 B》2022,31(5):57304-057304
The quantum Hall effect (QHE), which is usually observed in two-dimensional systems, was predicted theoretically and observed experimentally in three-dimensional (3D) topological semimetal. However, there are some inconsistencies between the theory and the experiments showing the theory is imperfect. Here, we generalize the theory of the 3D QHE of Fermi arcs in Weyl semimetal. Through calculating the sheet Hall conductivity of a Weyl semimetal slab, we show that the 3D QHE of Fermi arcs can occur in a large energy range and the thickness dependences of the QHE in different Fermi energies are distinct. When the Fermi energy is near the Weyl nodes, the Fermi arcs give rise to the QHE which is independent of the thickness of the slab. When the Fermi energy is not near the Weyl nodes, the two Fermi arcs form a complete Fermi loop with the assistance of bulk states giving rise to the QHE which is dependent on the sample thickness. We also demonstrate how the band anisotropic terms influence the QHE of Fermi arcs. Our theory complements the imperfections of the present theory of 3D QHE of Fermi arcs.  相似文献   

4.
Xu G  Weng H  Wang Z  Dai X  Fang Z 《Physical review letters》2011,107(18):186806
In 3D momentum space, a topological phase boundary separating the Chern insulating layers from normal insulating layers may exist, where the gap must be closed, resulting in a "Chern semimetal" state with topologically unavoidable band crossings at the Fermi level. This state is a condensed-matter realization of Weyl fermions in (3+1)D, and should exhibit remarkable features, such as magnetic monopoles and Fermi arcs. Here we predict, based on first principles calculations, that such a novel quantum state can be realized in a known ferromagnetic compound HgCr2Se4, with a single pair of Weyl fermions separated in momentum space. The quantum Hall effect without an external magnetic field can be achieved in its quantum-well structure.  相似文献   

5.
Recently, a new type of Weyl semimetal called type-II Weyl semimetal has been proposed. Unlike the usual (type-I) Weyl semimetal, which has a point-like Fermi surface, this new type of Weyl semimetal has a tilted conical spectrum around the Weyl point. Here we calculate the anomalous Hall conductivity of a Weyl semimetal with a tilted conical spectrum for a pair of Weyl points, using the Kubo formula. We find that the Hall conductivity is not universal and can change sign as a function of the parameters quantifying the tilts. Our results suggest that even for the case where the separation between the Weyl points vanishes, tilting of the conical spectrum could give rise to a finite anomalous Hall effect, if the tilts of the two cones are not identical.  相似文献   

6.
7.
外尔半金属是继石墨烯以及拓扑绝缘体之后的又一个研究热点。相比于后两者,外尔半金 属独特的三维无能隙线性色散能带结构使得它有很多奇特的性质,如:手性反常、手性磁效应、 反弱局域化、手性朗道能级和负磁阻效应等。实际样品中无序总是不可避免的,所以考虑无序对 体系的影响是很有必要的。我们回顾了无序下第一类以及第二类外尔半金属的相变特性,并获得 了完整的相图,这些无序诱导的相变丰富了拓扑安德森绝缘体和安德森金属绝缘体相变的物理内 涵。我们同样回顾了长程短程无序影响下的第一类外尔半金属体系的输运,发现了一种不能采用 玻尔兹曼输运方程来描述的输运过程。我们介绍Imbert-Fedorov 位移这一光学中的效应在外尔 半金属中的实现,这为更好地应用外尔半金属提供了更多的可能性,随后采用波包散射,我们解 释了外尔半金属中的超高载流子迁移率问题的原因,最后我们给出一个简要的总结。  相似文献   

8.
Magnetic topological materials, which combine magnetism and topology, are expected to host emerging topological states and exotic quantum phenomena. In this study, with the aid of greatly enhanced coercive fields in high-quality nanoflakes of the magnetic Weyl semimetal Co_3Sn_2S_2, we investigate anomalous electronic transport properties that are difficult to reveal in bulk Co_3Sn_2S_2 or other magnetic materials. When the magnetization is antiparallel to the applied magnetic field, the low longitudinal resistance state occurs, which is in sharp contrast to the high resistance state for the parallel case. Meanwhile, an exceptional Hall component that can be up to three times larger than conventional anomalous Hall resistivity is also observed for transverse transport. These anomalous transport behaviors can be further understood by considering nonlinear magnetic textures and the chiral magnetic field associated with Weyl fermions, extending the longitudinal and transverse transport physics and providing novel degrees of freedom in the spintronic applications of emerging topological magnets.  相似文献   

9.
Topological states of matter possess bulk electronic structures categorized by topological invariants and edge/surface states due to the bulk-boundary correspondence. Topological materials hold great potential in the development of dissipationless spintronics, information storage and quantum computation, particularly if combined with magnetic order intrinsically or extrinsically. Here, we review the recent progress in the exploration of intrinsic magnetic topological materials, including but not limited to magnetic topological insulators, magnetic topological metals, and magnetic Weyl semimetals. We pay special attention to their characteristic band features such as the gap of topological surface state, gapped Dirac cone induced by magnetization (either bulk or surface), Weyl nodal point/line and Fermi arc, as well as the exotic transport responses resulting from such band features. We conclude with a brief envision for experimental explorations of new physics or effects by incorporating other orders in intrinsic magnetic topological materials.  相似文献   

10.
Topological Weyl semimetals (WSM), a new state of quantum matter with gapless nodal bulk spectrum and open Fermi arc surface states, have recently sparked enormous interest in condensed matter physics. Based on the symmetry and fermiology, it has been proposed that WSMs can be broadly classified into two types, type-I and type-II Weyl semimetals. While the undoped, conventional, type-I WSMs have point like Fermi surface and vanishing density of states (DOS) at the Fermi energy, the type-II Weyl semimetals break Lorentz symmetry explicitly and have tilted conical spectra with electron and hole pockets producing finite DOS at the Fermi level. The tilted conical spectrum and finite DOS at Fermi level in type-II WSMs have recently been shown to produce interesting effects such as a chiral anomaly induced longitudinal magnetoresistance that is strongly anisotropic in direction and a novel anomalous Hall effect. In this work, we consider the anomalous Nernst effect in type-II WSMs in the absence of an external magnetic field using the framework of semi-classical Boltzmann theory. Based on both a linearized model of time-reversal breaking WSM with a higher energy cut-off and a more realistic lattice model, we show that the anomalous Nernst response in these systems is strongly anisotropic in space, and can serve as a reliable signature of type-II Weyl semimetals in a host of magnetic systems with spontaneously broken time reversal symmetry.  相似文献   

11.
Weyl semimetals are a new class of Dirac material that possesses bulk energy nodes in three dimensions, in contrast to two dimensional graphene. In this paper, we study a Weyl semimetal subject to an applied magnetic field. We find distinct behavior that can be used to identify materials containing three dimensional Dirac fermions. We derive expressions for the density of states, electronic specific heat, and the magnetization. We focus our attention on the quantum oscillations in the magnetization. We find phase shifts in the quantum oscillations that distinguish the Weyl semimetal from conventional three dimensional Schrödinger fermions, as well as from two dimensional Dirac fermions. The density of states as a function of energy displays a sawtooth pattern which has its origin in the dispersion of the three dimensional Landau levels. At the same time, the spacing in energy of the sawtooth spike goes like the square root of the applied magnetic field which reflects the Dirac nature of the fermions. These features are reflected in the specific heat and magnetization. Finally, we apply a simple model for disorder and show that this tends to damp out the magnetic oscillations in the magnetization at small fields.  相似文献   

12.
The transport properties and electron states in cylinder nanowires of Dirac and Weyl semimetals are studied paying special attention to the structure and properties of the surface Fermi arcs. The latter make the electric charge and current density distributions in nanowires strongly nonuniform as the majority of the charge density is accumulated at the surface. It is found that a Weyl semimetal wire also supports a magnetization current localized mainly at the surface because of the Fermi arcs contribution. By using the Kubo linear response approach, the direct current (DC) conductivity is calculated and it is found that its spatial profile is nontrivial. By explicitly separating the contributions of the surface and bulk states, it is shown that when the electric chemical potential and/or the radius of the wire is small, the electron transport is determined primarily by the Fermi arcs and the electrical conductivity is much higher at the surface than in the bulk. Due to the rise of the surface-bulk transition rate, the relative contribution of the surface states to the total conductivity gradually diminishes as the chemical potential increases. In addition, the DC conductivity at the surface demonstrates noticeable peaks when the Fermi level crosses energies of the surface states.  相似文献   

13.
We experimentally study electron transport between two superconducting indium leads, coupled to the WTe2 crystal surface. WTe2 is characterized by presence of Fermi arc surface states, as a predicted type-II Weyl semimetal candidate. We demonstrate Josephson current in unprecedentedly long 5 µm In–WTe2–In junctions, which is confirmed by IV curves evolution with temperature and magnetic field. The Josephson current is mostly carried by the topological surface states, which we demonstrate in a double-slit superconducting quantum interference device geometry, realized by coupling the opposite WTe2 crystal surfaces.  相似文献   

14.
The Kondo effect in quantum dots (QDs)-artificial magnetic impurities-attached to ferromagnetic leads is studied with the numerical renormalization group method. It is shown that the QD level is spin split due to the presence of ferromagnetic electrodes, leading to a suppression of the Kondo effect. We find that the Kondo effect can be restored by compensating this splitting with a magnetic field. Although the resulting Kondo resonance then has an unusual spin asymmetry with a reduced Kondo temperature, the ground state is still a locally screened state, describable by Fermi liquid theory and a generalized Friedel sum rule, and transport at zero temperature is spin independent.  相似文献   

15.
In doped Weyl semimetal with inversion symmetry, the two pairing states, i.e., the zero momentum BCS pairing and the finite momentum Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing are possible in principle. In this paper we use the standard Thouless criterion for the onset of pairings to investigate the leading pairing instability at the finite temperature. Our results suggest that both BCS and FFLO instabilities are possible depending on the on-site attractive interaction. The competition between the BCS pairing and FFLO pairing is driven by the mutual suppression between density of state near the Fermi surface and finite energy band structure in the whole Brillouin zone. For small and intermediate interaction, the former dominates and supports BCS pairing, while for strong interaction, the latter wins and favors FFLO pairing. We expect our results at the finite temperature can provide some important message to identify the true ground state.  相似文献   

16.
拓扑物态包括拓扑绝缘体、拓扑半金属以及拓扑超导体.拓扑物态奇异的能带结构以及受拓扑保护的新奇表面态,使其具有了独特的输运性质.拓扑半金属作为物质的一种三维拓扑态具有无能隙的准粒子激发,根据导带和价带的接触类型分为外尔半金属、狄拉克半金属和节线半金属.本文以拓扑半金属为主回顾了在磁场下拓扑物态中量子输运的最新工作,在不同的磁场范围内分别给出了描述拓扑物态输运行为的主要理论.  相似文献   

17.
The influence of an external electric field on the binding energies of the ground state and excited states with the third-harmonic-generation (THG) coefficient for spherical quantum dot (QD) with parabolic confinement is investigated theoretically. The energy levels and wave functions of electronic states in the QDs are calculated using by variational method within the effective-mass approximation. The numerical results demonstrate that the THG coefficient very sensitively depends on the magnitude of the electric field and the radius of the QDs. In addition, the THG coefficient also depends on the relaxation rate of the spherical QD with parabolic confinement and the position of impurity.  相似文献   

18.
Based on first-principles calculations within density functional theory, we studied the effects of Cr adsorption on the electronic and magnetic properties of Bi2Se3 topological insulators employing spin–orbit coupling (SOC) self-consistently. Cr atom induces a spin-polarization with total net magnetic moments of 2.157 μB (spin up). There is a p-d hybridization between the Cr 3d states and the nearest neighbor Se 4p states. A peak of density of states appears at Fermi level. The electronic structures change and the energy levels split near the Fermi level. No gap opening has been found at the Dirac point of the surface state from the bottom surface.  相似文献   

19.
We have studied a double-layer self-assembled quantum dot (QD) structures consisting of non-magnetic CdSe and magnetic CdMnSe. Transmission electron microscopy image shows that QDs are formed within the CdSe and CdMnSe layers, and they are vertically correlated in the system. The strong interband ground state transition was observed in magneto-photoluminescence (PL) experiments. In contrast to a typical behavior for many low-dimensional systems involving diluted magnetic semiconductors (DMSs), where PL signal dramatically increases when an external magnetic field is applied, we have observed a significant decrease of the PL intensity as a function of magnetic field in the double-layer structures where the alternating QD layers contain the DMS and non-DMS QDs. We attribute such effect to carrier transfer from non-magnetic CdSe dots to magnetic CdMnSe dots due to the large Zeeman shift of the band edges of DMS QDs in magnetic field. Since the band alignment of QD structure strongly depends on the spin states of system, we performed polarization-selective PL measurement to identify spin-dependent carrier tunneling in this coupled system.  相似文献   

20.
Topological semimetals are a new type of matter with one-dimensional Fermi lines or zero-dimensional Weyl or Dirac points in momentum space. Here using first-principles calculations, we find that the non-centrosymmetric PbTaS2 is a topological nodal line semimetal. In the absence of spin-orbit coupling(SOC), one band inversion happens around a high symmetrical H point, which leads to forming a nodal line. The nodal line is robust and protected against gap opening by mirror reflection symmetry even with the inclusion of strong SOC. In addition, it also hosts exotic drumhead surface states either inside or outside the projected nodal ring depending on surface termination. The robust bulk nodal lines and drumhead-like surface states with SOC in PbTaS_2 make it a potential candidate material for exploring the freakish properties of the topological nodal line fermions in condensed matter systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号