首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electric field gradients (EFGs) resulting from interstitial point defects in fcc metals have been investigated. The defect induced charge density, used to evaluate the valence effect EFG, is calculated self-consistently in the density functional formalism. An ab initio calculation of the size effect EFG is carried out for a positive muon at an octahedral site in the fcc lattice in the elastic continuum model. The components of the strain field tensor are evaluated assuming the lattice of dressed point ions interacting through the screened Coulomb potential. No adjustable parameter has been used. The theoretical results are in good agreement with the experimental values within experimental uncertainties. It is emphasized that both the strain and conduction electron contributions are equally important in the estimation of the electric field gradient.  相似文献   

2.
The interaction of a three-dimensional atomic system in a short-range potential with intense laser radiation is investigated by the direct numerical integration of the nonstationary Schrödinger equation. The calculations helped to discover a stabilization regime, which is interpreted as a result of forming a Kramers-Henneberger atom “dressed” in a field. Dynamics of the energy spectrum of photoelectrons depending on the increase of the laser field intensity is investigated, and conditions of a photodetachment of an electron from a bound state of the Kramers-Henneberger potential are analyzed. These results reveal specific features of the stabilization process of the three-dimensional system with a short-range potential compared to the similar process in a system with a long-range (Coulomb) potential.  相似文献   

3.
贾正茂  曾志男  李儒新 《中国物理 B》2017,26(1):13203-013203
Electron localization in the dissociation of the symmetric linear molecular ion H_3~(2+) is investigated. The numerical simulation shows that the electron localization distribution is dependent on the central frequency and peak electric field amplitude of the external ultrashort ultraviolet laser pulse. When the electrons of the ground state are excited onto the 2pσ~2Σ_u~+ by a one-photon process, most electrons of the dissociation states are localized at the protons on both sides symmetrically. Almost no electron is stabilized at the middle proton due to the odd symmetry of the wave function. With the increase of the frequency of the external ultraviolet laser pulse, the electron localization ratio of the middle proton increases, for more electrons of the ground state are excited onto the higher 3pσ~2Σ_u~+ ustate. 50.9% electrons of all the dissociation events can be captured by the middle Coulomb potential well through optimizing the central frequency and peak electric field amplitude of the ultraviolet laser pulse. Besides, a direct current(DC) electric field can be utilized to control the electron motions of the dissociation states after the excitation of an ultraviolet laser pulse, and 68.8% electrons of the dissociation states can be controlled into the middle proton.  相似文献   

4.
Using the effective mass and parabolic band approximations and a variational procedure we have calculated the combined effects of intense laser radiation, hydrostatic pressure, and applied electric field on shallow-donor impurity confined in cylindrical-shaped single and double GaAs-Ga1−xAlxAs QD. Several impurity positions and inputs of the heterostructure dimensions, hydrostatic pressure, and applied electric field have been considered. The laser effects have been introduced by a perturbative scheme in which the Coulomb and the barrier potentials are modified to obtain dressed potentials. Our findings suggest that (1) for on-center impurities in single QD the binding energy is a decreasing function of the dressing parameter and for small dot dimensions of the structures (lengths and radius) the binding energy is more sensitive to the dressing parameter, (2) the binding energy is an increasing/decreasing function of the hydrostatic pressure/applied electric field, (3) the effects of the intense laser field and applied electric field on the binding energy are dominant over the hydrostatic pressure effects, (4) in vertically coupled QD the binding energy for donor impurity located in the barrier region is smaller than for impurities in the well regions and can be strongly modified by the laser radiation, and finally (5) in asymmetrical double QD heterostructures the binding energy as a function of the impurity positions follows a similar behavior to the observed for the amplitude of probability of the noncorrelated electron wave function.  相似文献   

5.
Due to the effect of Coulomb potential, the angular distribution of electron ionized in an elliptically polarized field presents an asymmetric structure, which is called "Coulomb asymmetry". In this paper, we study how to modulate the asymmetric degree of the electron angular distribution by using a semi-classical simplified tunneling model. It is found that the asymmetric structure is easily affected by three parameters:the ionization potential, the laser ellipticity, and the laser wavelength. However, the laser intensity has little effect on the asymmetric structure. To explain these phenomena we have derived an analytical formula, which clearly demonstrates the relationship between the asymmetric degree and these parameters. Moreover, we find that in elliptically polarized laser field only those electrons that are released in a certain narrow window of initial field phase are greatly effected by the Coulomb potential and play the key role in the formation of asymmetric structure. This study provides some reference values in the development of attoclock technique, which can be used to probe the tunneling process.  相似文献   

6.
Due to the effect of Coulomb potential, the angular distribution of electron ionized in an elliptically polarized field presents an asymmetric structure, which is called "Coulomb asymmetry". In this paper, we study how to modulate the asymmetric degree of the electron angular distribution by using a semi-classical simplified tunneling model. It is found that the asymmetric structure is easily affected by three parameters: the ionization potential, the laser ellipticity,and the laser wavelength. However, the laser intensity has little effect on the asymmetric structure. To explain these phenomena we have derived an analytical formula, which clearly demonstrates the relationship between the asymmetric degree and these parameters. Moreover, we find that in elliptically polarized laser field only those electrons that are released in a certain narrow window of initial field phase are greatly effected by the Coulomb potential and play the key role in the formation of asymmetric structure. This study provides some reference values in the development of attoclock technique, which can be used to probe the tunneling process.  相似文献   

7.
The dynamics of a hydrogen atom and a 3D model quantum system with a short-range potential is investigated using the direct numerical integration of the nonstationary Schrödinger equation in a wide range of laser intensities and frequencies. The simulation data are compared with the predictions of variants of the Keldysh-type theories. It is demonstrated that, in the low-frequency (tunnel) limit, the ionization rates of the systems with the Coulomb and short-range potentials and the same values of the ionization potential significantly differ from each other whereas, in the high-frequency (single-photon) limit, we do not observe a substantial difference between the ionization rates. Specific features of the angular distribution of the photoelectron emission and the photoelectron energy spectra are investigated in detail. In addition, the ionization suppression is studied for both Coulomb- and short-range-potential atoms. The stabilization is due to the dramatic reconstruction of the atom in the presence of a strong laser field and the formation of a new system (Kramers-Henneberger atom) that exhibits an increasing resistance to the ionization upon an increase in the laser intensity. In the two-photon ionization regime, the stabilization phenomenon is substantially more pronounced for the system with the Coulomb potential. This results from the effective excitation of the Rydberg states of the dressed atom in the strong-field limit.  相似文献   

8.
The mechanism of the Coulomb explosion of a metal in an external pulsed electric field is discussed. In the case of a low-frequency field, when its frequency is lower than the frequency of electron collisions, it is impossible to reach the conditions of the Coulomb explosion of a metal if the field pulse duration is shorter than the time of electron energy relaxation upon elastic collisions, and the electron temperature is well above the Fermi energy and the work function. In the case of a high-frequency field, e.g., in a powerful pulse of ultraviolet laser radiation, the Coulomb explosion can occur if the field strength is well above the intraatomic field strength (i.e., when the laser power density is ≥1019 W/cm2).  相似文献   

9.
通过数值求解原子在强激光场中的含时薛定谔方程,研究了有库仑奇点和无库仑奇点的一维模型氢原子和三维真实氢原子产生高次谐波的特性。结果表明,有库仑奇点和无库仑奇点的一维模型氢原子和三维真实氢原子产生高次谐波的截止位置相同,但是高次谐波强度变化特征明显不同,进一步的研究表明,无库仑奇点的模型氢原子产生的高次谐波谱相对变化趋势与三维真实氢原子的高次谐波谱变化趋势是完全一致的。  相似文献   

10.
强激光场中模型氢原子和真实氢原子产生高次谐波的比较   总被引:1,自引:1,他引:0  
通过数值求解原子在强激光场中的含时薛定谔方程,研究了有库仑奇点和无库仑奇点的一维模型氢原子和三维真实氢原子产生高次谐波的特性.结果表明,有库仑奇点和无库仑奇点的一维模型氢原子和三维真实氢原子产生高次谐波的截止位置相同,但是高次谐波强度变化特征明显不同,进一步的研究表明,无库仑奇点的模型氢原子产生的高次谐波谱相对变化趋势与三维真实氢原子的高次谐波谱变化趋势是完全一致的.  相似文献   

11.
The dressing of atomic states in a strong laser field modifies the structure of the incoherently scattered fraction of the laser intensity, which is described to a good approximation by the Mollow spectrum. The incoherent spectrum is generated by the fluctuations of the atomic dipole moment about its expectation value, and the positions of the peaks are approximately given by the energy differences between the dressed atomic energy levels. In this paper, we investigate radiative corrections received by the dressed states. Our calculations are motivated by the quest to understand in detail the interplay of a bound electron dressed by the highly populated laser mode and its interaction with the vacuum modes. Alternatively, this may be seen as an electron experiencing modified stimulated and spontaneous radiative corrections in a vacuum tailored by the laser field. We obtain dressed self-energy shifts that depend on the Rabi flopping frequency (and in turn on the laser intensity) and on the detuning of the laser field relative to the atomic resonance frequency. We find that the dressed radiative corrections differ in a nontrivial manner from the radiative shifts of the ‘bare’ atomic states.  相似文献   

12.
We present calculations of three photon ionization of Li produced by 3-ps laser pulses within a single electron local model potential using the dressed state picture. The laser frequency ranges from 15 000 to 18 400 cm−1. We have found that the measured ionization signal as a function of photon frequency results from ionization processes in a region where the laser intensity is not homogeneous. We assume a Gaussian shape for the light pulse in the interaction volume. Our results are shown to be in good agreement with experiment. We propose that free electrons are submitted to a ponderomotif potential to interpret experimental results. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Laser dependence of binding energy on exciton in a GaAs quantum well wire embedded on an AlGaAs wire within the single band effective mass approximation is investigated. Laser dressed donor binding energy is calculated as a function of wire radius with the renormalization of the semiconductor gap and conduction valence effective masses. We take into account the laser dressing effects on both the impurity Coulomb potential and the confinement potential. The valence-band anisotropy is included in our theoretical model by using different hole masses in different spatial directions. The spatial dielectric function and the polaronic effects have been employed in a GaAs/AlGaAs quantum wire. The numerical calculations reveal that the binding energy is found to increase with decrease with the wire radius, and decrease with increase with the value of laser field amplitude, the polaronic effect enhances the binding energy considerably and the binding energy of the impurity for the narrow well wire is more sensitive to the laser field amplitude.  相似文献   

14.
弱光场下电子与库仑势散射问题的弱耦合解法   总被引:2,自引:0,他引:2       下载免费PDF全文
李介平 《物理学报》1990,39(8):38-46
电子与库仑势散射,在圆极化、偶极近似的外光场作用下,其Schr?dinger方程可通过么正变换并引入修饰势来讨论。对修饰势选取恰当的公式展开,并用Floquet分波法,可分离出径向波动方程组,它在弱耦合近似下是可积的,并且近似的波函数,S矩阵和截面可解析表示,其结果与数值迭代解作了比较。 关键词:  相似文献   

15.
超短超强激光因其极端的物理参数范围以及可用于研究相对论等离子体等特征,成为当前激光驱动磁重联物理的研究热点.通常采用两路激光与平面靶相互作用实现激光驱动磁重联,然而在实验诊断中,由于激光等离子体自身的复杂性导致很难辨别磁重联的物理特征.本文对两路短脉冲激光驱动平面靶磁重联进行了数值模拟,重点分析了靶后电势分布特征和磁重联之间的关系.模拟结果显示,靶后电势分布可以直接影响被加速离子在探测面上的空间分布,因此可用来直接诊断短脉冲激光驱动磁重联实验.  相似文献   

16.
光场下类氢原子的Schrdinger方程可用缀饰势方法求解.波动方程展开为Floquet分波后,可以得到弱光场或强光场下近似的径向波函数和复的电离本征值,然后计算了共振能量和半宽度.  相似文献   

17.
Spin-orbit qubit (SOQ) is the dressed spin by the orbital degree of freedom through a strong spin-orbit coupling (SOC). We show that Coulomb interaction between two electrons in quantum dots located separately in two nanowires can efficiently induce quantum entanglement between two SOQs. But to achieve the highest possible value for two SOQs concurrence, strength of SOC and confining potential for the quantum dots should be tuned to an optimal ratio. The physical mechanism to achieve such quantum entanglement is based on the feasibility of the SOQ responding to the external electric field via an intrinsic electric dipole spin resonance.  相似文献   

18.
The propagation of monochromatic laser radiation in a volume system of quantum dots (QDs) that are tunnel-coupled along one axis is considered. The electron energy spectrum of the QD system is modeled in the tight-binding approximation with allowance for the Coulomb interaction of electrons in the Hubbard model. The electromagnetic field of laser radiation in a QD system is described quasi-classically by Maxwell equations; as applied to this problem, they are reduced to a non-one-dimensional wave equation for the vector potential. As a result of the analysis of the wave equation in the approximation of varying amplitudes and phases, an effective equation describing the electromagnetic field in a QD system is obtained and numerically solved. The influence of the parameters of the system and the amplitude and frequency of the field of incident laser radiation on the character of its propagation is investigated. Nonmonotonic dependences of the factor characterizing the laser beam diffraction spread on the parameters of the electron energy spectrum of the system are obtained.  相似文献   

19.
贾正茂  曾志男  唐文涛  李儒新 《中国物理 B》2017,26(1):13201-013201
A dc electric field is utilized to steer the electron motion after the molecular ion H_2~+ is excited by an ultrashort ultraviolet laser pulse. The numerical simulation shows that the electron localization distribution and the dissociation control ratio are dependent on the polarization direction and amplitude of the dc electric field. Most electrons of the dissociation state move opposite to the dc electric field and stabilize at the dressed-up potential well, for the dressed-down well is occupied by the electrons of the 1 sσ_g state.  相似文献   

20.
We simulate the current-voltage (I-V) characteristics of AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate lengths using the quasi-two-dimensional (quasi-2D) model. The calculation results obtained using the modified mobility model are found to accord well with the experimental data. By analyzing the variation of the electron mobility for the two-dimensional electron gas (213EG) with the electric field in the linear region of the AlGaN/AlN/GaN HFET I-V output characteristics, it is found that the polarization Coulomb field scattering still plays an important role in the electron mobility of AlGaN/AlN/GaN HFETs at the higher drain voltage and channel electric field. As drain voltage and channel electric field increase, the 2DEG density reduces and the polarization Coulomb field scattering increases, as a result, the 2DEG electron mobility decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号