首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
钱林茂  雒建斌  温诗铸  萧旭东 《物理学报》2000,49(11):2240-2246
使用原子力/摩擦力显微镜在5%—99%的相对湿度范围,研究了二氧化硅和二氧化硅基体上十八烷基三甲氧基硅烷自组装膜(简称OTE SAM/SiO2)表面摩擦力和粘着力随湿度的变化规律.实验表明OTE SAM/SiO2不仅能明显改善二氧化硅基体表面的摩擦性能,而且在200nN(接触区Hertz压力约为0.8GPa)的载荷条件下表现出良好的抗磨性能.由于强的亲水性,二氧化硅表面的摩擦力随湿度的增大先逐渐增大,然后急剧减小.相反,OTE SAM/SiO2关键词: 固体表面的物理性能 分子膜 纳米摩擦学  相似文献   

2.
Multilayer polyelectrolyte films containing silver ions were obtained by molecular deposition method on a glass plate or a quartz substrate. The in situ Ag nanoparticles were synthesized in the multilayer polyelectrolyte films which were put into fresh NaBH4 aqueous solution. The structure and surface morphology of composite molecular deposition films were observed by UV-vis spectrophotometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Tribological characteristic was investigated by AFM and micro-tribometer. It was found that the in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films have lower coefficient of friction and higher anti-wear life than pure polyelectrolyte molecular deposition films.  相似文献   

3.
J. Li 《Applied Surface Science》2009,255(12):6159-6163
Thin films deposited on the phosphonate 3-aminopropyltriethoxysilane (APTES) self-assembled monolayer (SAM) were prepared on the hydroxylated silicon substrate by self-assembling process from specially formulated solution. Chemical compositions of the films were detected by X-ray photoelectron spectrometry (XPS). The thickness of the films was determined with an ellipsometer, and the morphologies and nanotribological properties of the samples were analyzed by means of atomic force microscopy (AFM). As a result, the target film was obtained and the thin films were deposited on the silicon substrate. It was also found that the thin films showed the lowest friction and adhesion followed by APTES-SAM and phosphorylated APTES-SAM, while silicon substrate showed high friction and adhesion. Microscale scratch/wear studies clearly showed that thin films were much more scratch/wear resistant than the other samples. The superior friction reduction and scratch/wear resistance of thin films were attributed to low work of adhesion of non-polar terminal groups and the strong bonding strength between the films and the substrate.  相似文献   

4.
Polyelectrolyte multilayers (PEMs) fabricated by spin-assisted layer-by-layer assembly technique were used as nanoreactors for in situ synthesis of Cu nanoparticles, allowing generation of Cu nanoparticles doped composite, denoted as Cu-nanoparticles PEMs. Thus chemical reaction within the PEMs was initiated by a series of reaction cycles in which Cu2+ was absorbed into the polymer-coated silicon substrate and reduced in NaBH4 solution. The surface of Cu-nanoparticles PEMs was modified by heptadecafluorodecyl-trimethoxysilane (FAS-17) with low surface energy, generating a hydrophobic film. The adhesion and nano-friction behavior of the hydrophobic film was investigated using an atomic force microscope, while its macro-tribological behavior sliding against stainless steel under dry- and distilled-water-lubricated conditions was investigated using a UMT-2 test rig. It was found that Cu-nanoparticles PEMs modified with FAS-17 has a lower friction and higher adhesion than that without modification. Moreover, the hydrophobic film possesses lower friction coefficient under water-lubrication and higher friction coefficient under dry-sliding than the hydrophilic film under the same conditions, which could be mainly due to the difference in the surface energy. The titled hydrophobic films with low adhesion and friction would have potential application in micro/nano-electro-mechanical systems.  相似文献   

5.
Cu film and Ti/Cu film on polyimide substrate were prepared by ion implantation and ion beam assisted deposition (IBAD) techniques. Three-dimension white-light interfering profilometer was used to measure thickness of each film. The thickness of the Cu film and Ti/Cu film ranged between 490 nm and 640 nm. The depth profile, surface morphology, roughness, adhesion, nanohardness, and modulus of the Cu and Ti/Cu films were measured by scanning Auger nanoprobe (SAN), atomic force microscopy (AFM), and nanoindenter, respectively. The polyimide substrates irradiated with argon ions were analyzed by scanning electron microscopy (SEM) and AFM. The results suggested that both the Cu film and Ti/Cu film were of good adhesion with polyimide substrate, and ion beam techniques were suitable to prepare thin metal film on polyimide.  相似文献   

6.
《Physics letters. A》1999,260(5):417-423
A kind of newly synthesized polyimide (PI) LB films were fabricated to align ferroelectric liquid crystal (FLC). The topologies of PI LB films treated by different imidization processes were investigated by atomic force microscopy (AFM). It is found that the imidization temperature influences the crystalline structure of the LB films and high-temperature imidized LB films can provide the energy barrier for the realization of excellent bistability, while the ultra-thinness of LB films is helpful for the quick response of the FLC cell.  相似文献   

7.
Retinal trauma is a serious concern for patients undergoing inner limiting membrane (ILM) peeling to correct for various vitreoretinal interface conditions. This mechanical trauma can be prevented by modifying the surface of surgical instruments to increase adhesion to the ILM. To this effect, we have studied the effects of roughness and surface charge on the adhesive properties of ILMs by utilizing layer-by-layer (LbL) films with embedded gold nanoparticles (LbL-AuNP films). LbL films were assembled on atomic force microscopy (AFM) tipless cantilevers. Topographical analysis of these films, with and without nanoparticles, showed that LbL films with nanoparticles had a higher rms roughness compared to films alone or unmodified cantilevers. Nanoparticle-modified LbL films significantly increased the adhesion forces at the cantilever-ILM interface, compared to LbL films without particles. Surprisingly, adsorption of gold nanoparticles onto the AFM cantilevers caused increases in adhesion forces greater than those measured with LbL-AuNP films. These results have important implications for the design of surface modifications for vitreoretinal surgical instruments.  相似文献   

8.
A friction force microscope (FFM) with different probes and a ball-on-disk (BOD) tribo-meter were used to investigate the tribological properties of diamond-like carbon (DLC) films. DLC films were prepared by chemical vapor deposition (CVD) method by altering the deposition parameters, and their morphologies and structural information were examined with an atomic force microscope (AFM) and the Raman spectrum. The wear traces of the DLC films after frictional tests were analyzed by an optical microscope. It is found that surface roughness and adhesion play important roles in characterizing the tribological properties of DLC films using FFM. Moreover, the debris accumulation is another significant factor affecting the frictional behavior of DLC films, especially for the sharp tip. The difference in coefficients of friction (COFs) obtained by the BOD method among different DLC films under water lubrication is much smaller than the case without water lubrication. The variation trends in COF for the flat tip and the BOD test are similar in comparison with the result obtained with the sharp tip. The wear traces after frictional tests suggest that DLC films under water lubrication are prone to be damaged more readily.  相似文献   

9.
Multiply-alkylated cyclopentanes (MACs) composite thin films containing Cu nanoparticles are fabricated on the octadecyltrichlorosilane (OTS)-modified substrate by a spin-coating technique. The thickness, wetting behavior, and nanoscale morphologies of the films are characterized by means of ellipsometry, contact angle measurement, and atomic force microscope (AFM). The friction and wear behaviors of the thin films sliding against Si3N4 ball are examined on a UMT-2MT tribometer in a ball-on-disk contact mode. The worn surfaces of the OTS-MAC-Cu composite film and the counterpart Si3N4 balls are investigated with a scanning electron microscope. Water contact angle on OTS-MAC-Cu composite film is higher than that of OTS-MAC film. OTS-MAC-Cu composite film exhibits higher load-carrying capacity and better friction reduction and antiwear behavior as compared with OTS-MAC film. This may be attributed to the load-carrying and self-repairing property of the Cu nanoparticles in the composite film and the formation of a transfer layer composed of OTS, MAC, and Cu on the rubbing surface of the counterpart ball.  相似文献   

10.
本文利用Langmuir-Blodgett(LB)技术将小牛胸腺DNA分子沉积在银基底上,测试并讨论了它的π-A等温曲线,原子力图及表面增强拉曼光谱(SERS)。通过利用LB技术,获得了DNA分子的LB复合膜的高质量的SERS。在DNA分子LB膜的表面增强拉曼光谱中,DNA的核糖和碱基腺嘌呤是吸附活性部位,它们的振动光谱得到增强。DNA的其它碱基和磷酸基团的拉曼光谱强度也明显的得到增强。分析认为DNA分子增强的拉曼光谱主要是由于LB膜的有序结构的贡献,使得SERS效应得到进一步的增强。因此利用LB技术是得到DNA的高质量SERS很好的方法。  相似文献   

11.
Atomic Force Microscopy (AFM) has been used to show the formation of solid-phase domains from fluid-phase domains on compression of DiPalmitoyl-PhosphatidylCholine (DPPC) monolayer Langmuir-Blodgett (LB) films. The chiral structures on the solid substrates were observed for the first time. By applying the friction force technique, we were able to distinguish the different regions of LB films according to their elastic properties. The influence of rates of compression on the domain shape as well as the microstructure within the domain were also studied.  相似文献   

12.
Amorphous-carbon (a-C) films were deposited on a single-crystal silicon substrate by vacuum vapor deposition system and these amorphous carbon films were implanted with 110 keV C+ at fluences of 1 × 1017 ions/cm2. The effect of ion mixing on the surface morphology, friction behavior and adhesion strengths of amorphous carbon films was examined making use of atomic force microscopy (AFM), ball-on-disk reciprocating friction tester, nano-indentation system and scanning electron microscope (SEM). The changes in chemical composition and structure were investigated by using X-ray photoelectron spectroscopy (XPS). The results show that the anti-wear life and adhesion of amorphous carbon films on the Si substrates were significantly increased by C ion implantation. The SiC chemical bonding across the interface plays a key role in the increase of adhesion strength and the anti-wear life of amorphous carbon film. The friction and wear mechanisms of amorphous carbon film under dry friction condition were also discussed.  相似文献   

13.
3-Aminopropyltriethoxysilane (APTES) thin films were prepared on the hydroxylated silicon substrate by a self-assembling process from formulated solution. Chemical compositions of the films were detected by X-ray photoelectron spectrometry (XPS). The thickness of the films was determined with an ellipsometer, while the morphologies of the original and worn surfaces of the samples were analyzed by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The tribological properties of APTES thin films sliding against GCr15 steel ball were evaluated on a UMT-2MT reciprocating friction and wear tester. It was found that the macroscopic friction coefficients for coating times more than 1 h ranged from 0.177 to 0.3 whereas the value for short coating time was as high as 0.8. It was also found that the tribological behaviors of APTES films were sensitive to normal load and sliding velocity. SEM observation of the morphologies of worn surfaces indicates that the wear of silicon is characteristic of brittle fracture and severe abrasion. Differently, abrasion and micro-crack dominate the wear of APTES–SAM. The superior friction reduction and wear resistance of APTES films compared to the silicon substrate are attributed to good adhesion of the films to the substrate.  相似文献   

14.
The effect of backbone chains on friction force was investigated on both Langmuir-Blodgett (LB) films of 10,12-heptacosadiynoic acid and the (0 1 0) surfaces of single crystals of 2,4-hexadiene-1,6-diol using friction force microscopy (FFM). It was observed that friction force decreased when the scanning direction was parallel to the [0 0 1] direction in both samples. Moreover, friction force decreased when the scanning direction was parallel to the crystallographic [1 0 2], [1 0 1], [1 0 0] and directions in only the single crystals. For the LB films, the [0 0 1] direction corresponds to the backbone chain direction of 10,12-heptacosadiynoic acid. For the single crystals, both the [0 0 1] and [1 0 1] directions correspond to the backbone chain direction, and the [1 0 2], [1 0 0] and directions correspond to the low-index crystallographic direction. In both the LB films and single crystals, the friction force was minimized when the directions of scanning and the backbone chain were parallel.  相似文献   

15.
Hexagonal boron nitride (h-BN) has a low friction coefficient and weak surface attractive force similar to graphite. Furthermore, while graphite is conductive, BN is a good insulator. These properties make it suitable for application like lubricating coating or as an insulator/buffer layer in electronic devices. The synthesize of h-BN layer by surface segregation phenomena and mechanical properties of the h-BN surface segregated on Cu substrate have been investigated. During in situ annealing, the surface segregation of BN occurred on Cu/BN film deposited by deposition process with a rf magnetron co-sputtering system. Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) analysis showed that though the h-BN layer synthesized was not covered whole area of substrate but the h-BN layers partially covered substrate. And the concentration of oxygen on the surface after exposure in air is decreased with increase of BN concentration. The topography of atomic forces microscopy (AFM) showed that h-BN phases surface segregated are discontinuous droplet shape. The force curves of AFM and friction force of lateral force microscopy (LFM) showed that the h-BN droplet surface segregated have very weak attractive force and low friction coefficient equal to h-BN sintered plate.  相似文献   

16.
Several ultrathin luminescent Langmuir-Blodgett (LB) films have been prepared by using the subphase containing the rare earth ions (Eu3+, Dy3+). The effect of the rare earth ions on the monolayer of p-dodecanoyloxybenzoate (12-OBA) and p-myristoyloxybenzoate (14-OBA) was investigated. IR spectra showed the rare earth ions were bound to the carboxylic acid head groups and the coordination took place between the polar head group and the rare earth ions. The layer structure of the LB films was demonstrated by low-angle X-ray diffraction. The AFM study revealed that the LB films were uniform and crack free, and the films mainly consisted of closely packed grains with an average size of 241 nm. The LB films can give off strong fluorescence, and the signal can be detected from a single layer. The characteristic luminescence behaviors of LB films have been discussed compared with those of the complexes.  相似文献   

17.
The nanoindentation characterizations and mechanical properties of fluorine-doped tin oxide (SnO2:F) films deposited on glass substrates, using chemical vapor deposition (CVD) method, were studied, which included the effects of the indentation loads, the loading time and the hold time on the thin film. The surface roughness, fractal dimension and frictional coefficient were also studied by varying the freon flow rates. X-ray diffraction (XRD), atomic force microscopy (AFM) and frictional force microscopy (FFM) were used to analyze the morphology of the microstructure. The results showed that crystalline structure of the film had a high intensity (1 1 0) peak orientation, especially at a low freon flow rate. According to the nanoindentation records, the Young's modulus ranged from 62.4 to 75.1 GPa and the hardness ranged from 5.1 to 9.9 GPa at a freon flow rate of 8000 sccm. The changes in measured properties were due to changing loading rate.  相似文献   

18.
Low-energy electron diffraction (LEED), atomic force microscopy (AFM), and X-ray diffraction (XRD) have been used to investigate the structural and morphological character of a naturally chiral ceramic SrTiO3(621) substrate and of Pt and Cu thin films deposited on its surface. AFM experiments showed that as-received chirally-oriented SrTiO3(621) substrates display atomically smooth surface morphologies, while LEED patterns revealed that the surface structure has a net chirality. Pt(621) and Cu(621) thin films were grown heteroepitaxially on SrTiO3(621) substrates, as confirmed by XRD. AFM showed that the film surfaces were atomically smooth and LEED illustrated that the Pt films exhibit surface chirality, and by implication that the atomically-flat chirally-oriented Cu films also have chiral surfaces. The characteristics of the observed LEED patterns, where splitting of diffraction spots is considered to arise from the kinked step features of naturally chiral fcc metal surfaces, are discussed with respect to existing models. These results indicate that the chiral SrTiO3(621) ceramic surface drives the growth of single-enantiomer, chiral, metal (621) thin films.  相似文献   

19.
Adhesion of zein to solid substrates has been studied using surface energy profiles as indices and by adhesion mapping using atomic force microscopy (AFM). Different plasticizers like glycerol and sorbitol have been used to form mixed films with zein and properties of these films are studied using surface energy profiles. Comparison of the results from the different mixed samples with those from the pure zein films showed that force mapping could identify areas rich in protein. The adhesion maps produced were deconvoluted from sample topography and contrasted with the data obtained from contact angle measurements. A comparison of the two methods shows that the extent of contact angle hysteresis is indicative of both hydrophobicity of the surface as well as the force of adhesion. Mechanical properties and microstructure of zein films prepared by casting from solutions and using Langmuir-Blodgett film technique have been investigated. Pure zein seemed brittle and exhibited an essentially linear relationship between stress and strain. Films with plasticizer were tougher than these films. In general, mixed films showed better mechanical properties than pure films and had higher ultimate tensile strength and increased per cent elongation. Further, the mixed films of zein showed a higher force of adhesion compared to the pure films.  相似文献   

20.
Polyimide thin films, which possess good stability and film uniformity, are successfully fabricated on single crystal silicon wafers coated with a thin polymer brush by suface-initiated polymerization (SIP) as an adhesive layer. The growth kinetic of polyglycidyl methacrylate (PGMA) brush was studied by the means of ellipsometry. The nano-scale morphology and chemical composition of PGMA brush and polyimide film were studied with atomic force microscopy (AFM), Fourier transform infrared spectrum (FT-IR), and X-ray photoelectron spectroscopy (XPS). The tribological behaviors of the thin films sliding against AISI-52100 steel ball were examined on a static-dynamic friction precision measurement apparatus and UMT-2MT tribometer. The worn surface of the polyimide thin films was investigated with scanning electron microscopy (SEM). The results indicated that the chemically bonded polyimide films exhibited better friction reduction and antiwear behavior compared to the polymide films on bare silicon surface. At a load of 0.5 N and sliding speed of 20 mm s−1, the durability life of the polyimide thin films is over 25,000 sliding cycles and the friction coefficient is about 0.08.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号