首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
兰惠清  徐藏 《物理学报》2012,61(13):133101-133101
掺硅类金刚石(Si-DLC) 薄膜表现出优异的摩擦学性能, 在潮湿空气和高温中显示出极低的摩擦系数和很好的耐磨性, 但是许多实验表明Si-DLC膜的摩擦性能受其硅含量的影响很大. 因此, 本文采用分子动力学模拟的方法分别研究干摩擦和油润滑两种情况下不同硅含量的Si-DLC膜的摩擦过程. 滑移结果表明干摩擦时DLC膜和掺硅DLC膜之间生成了一层转移膜, 而油润滑时则为边界膜. 因此干摩擦时的摩擦力明显大于油润滑时的摩擦力. 少量添加硅确实能降低DLC膜的摩擦力, 但是硅含量大于20%后对DLC膜的摩擦行为几乎无影响. 干摩擦时硅含量对转移膜内键的数量影响很大, 转移膜内CC键和CSi键都先增加后减少, 滑移结束时几乎不含CSi键.  相似文献   

2.
The tribological behaviors of diamond and diamond-like carbon (DLC) films play a major role on their machining and mechanical applications. In this study, diamond and diamond-like carbon (DLC) films are deposited on the cobalt cemented tungsten carbide (WC-Co) substrate respectively adopting the hot filament chemical vapor deposition (HFCVD) technique and the vacuum arc discharge with a graphite cathode, and their friction properties are evaluated on a reciprocating ball-on-plate tribometer with counterfaces of silicon nitride (Si3N4) ceramic, cemented tungsten carbide (WC) and ball-bearing steel materials, under the ambient air without lubricating condition. Moreover, to evaluate their cutting performance, comparative turning tests are conducted using the uncoated WC-Co and as-fabricated CVD diamond and DLC coated inserts, with glass fiber reinforced plastics (GFRP) composite materials as the workpiece. The as-deposited HFCVD diamond and DLC films are characterized with energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), X-ray diffraction spectroscopy (XRD), Raman spectroscopy and 3D surface topography based on white-light interferometry. Furthermore, Rocwell C indentation tests are conducted to evaluate the adhesion of HFCVD diamond and DLC films grown onto WC-Co substrates. SEM and 3D surface topography based on white-light interferometry are also used to investigate the worn region on the surfaces of diamond and DLC films. The friction tests suggest that the obtained friction coefficient curves that of various contacts exhibit similar evolution tendency. For a given counterface, DLC films present lower stable friction coefficients than HFCVD diamond films under the same sliding conditions. The cutting tests results indicate that flank wear of the HFCVD diamond coated insert is lower than that of DLC coated insert before diamond films peeling off.  相似文献   

3.
The friction and wear properties of polyphenylene sulfide (PPS), polyethersulfone (PES) and polysulfone (PSU), which have similar molecular structure, were investigated using an end-face contact tribometer in three different cooling ways: sliding without air cooling, sliding with air cooling, and sliding in water. The worn surface and wear debris were observed using a scanning electron microscope (SEM). The effect of frictional heat on the tribological properties of the polymers was comparatively studied. When sliding in air, with increasing applied load, the wear rate of PPS decreased slightly initially then increased later while the wear rate of PES and PSU increased through out. The results suggested that the friction coefficient was mainly affected by the temperature of the worn polymer that was controlled by the balance of heat flow of the whole sliding contact system. When sliding in water, the friction coefficients of the three polymers decreased compared to that sliding in air and remained relatively steady through the whole process under different load. The wear rates of the three polymers had a close value and, remarkably, increased compared to that sliding in air. The water cooling and lubrication role decreased the tribological properties difference between the polymers.  相似文献   

4.
This paper reports tribological properties of diamond-like carbon (DLC) films nanostructured by femtosecond (fs) laser ablation. The nanostructure was formed in an area of more than 15 mm × 15 mm on the DLC surface, using a precise target-scan system developed for the fs-laser processing. The frictional properties of the DLC film are greatly improved by coating a MoS2 layer on the nanostructured surface, while the friction coefficient can be increased by surface texturing of the nanostructured zone in a net-like patterning. The results demonstrate that the tribological properties of a DLC surface can be controlled using fs-laser-induced nanostructuring.  相似文献   

5.
以膨胀石墨为原料,采用不同溶剂,通过液相超声直接剥离法制备多层石墨烯,利用透射电子显微镜、原子力学显微镜对其形貌进行了表征,在多功能往复摩擦磨损试验仪上研究了石墨烯石蜡分散体系的摩擦学性能。通过扫描电镜、能谱仪分析了磨痕形貌及表面元素组成。结果表明:多层石墨烯作为液体石蜡添加剂表现出良好的减摩抗磨性能,主要是因为多层石墨烯在磨损表面形成的物理吸附膜与摩擦化学反应膜的共同作用。  相似文献   

6.
In this work, investigations were conducted to analyze the properties of diamond-like carbon (DLC) film deposited on ultra-high molecular weight polyethylene (UHMWPE) by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) at a low temperature of 50 °C. Composition and structure of the films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Hardness and wettability of the film were tested. Tribological characterizations were carried out on a universal micro-tribometer, and reciprocating friction against ZrO2 ball was adopted with 25% bovine serum as lubrication. Results show that DLC film was successfully deposited on UHMWPE surface by RF-PECVD and the sp3 content was about 20% in the film. The film increased the macrohardness of the substrate by about 42% and the wettability was improved too. Tribology test showed a higher friction coefficient but a much smaller wear volume after the deposition due to the surface roughening and strengthening.  相似文献   

7.
张振宇  路新春  雒建斌 《中国物理》2007,16(12):3790-3797
A novel method, pulsed laser arc deposition combining the advantages of pulsed laser deposition and cathode vacuum arc techniques, was used to deposit the diamond-like carbon (DLC) nanofilms with different thicknesses. Spectroscopic ellipsometer, Auger electron spectroscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, atomic force microscopy, scanning electron microscopy and multi-functional friction and wear tester were employed to investigate the physical and tribological properties of the deposited films. The results show that the deposited films are amorphous and the sp$^{2}$, sp$^{3}$ and C--O bonds at the top surface of the films are identified. The Raman peak intensity and surface roughness increase with increasing film thickness. Friction coefficients are about 0.1, 0.15, 0.18, when the film thicknesses are in the range of 17--21~nm, 30--57~nm, 67--123~nm, respectively. This is attributed to the united effects of substrate and surface roughness. The wear mechanism of DLC films is mainly abrasive wear when film thickness is in the range of 17--41~nm, while it transforms to abrasive and adhesive wear, when the film thickness lies between 72 and 123~nm.  相似文献   

8.
With the invention of miniaturized devices like micro-electro-mechanical systems (MEMS), tribological studies at micro/nano-scale have gained importance. These studies are directed towards understanding the interactions between surfaces at micro/nano-scales, under relative motion. In MEMS devices, the critical forces, namely adhesion and friction restrict the smooth operation of the elements that are in relative motion. These miniaturized devices are traditionally made from silicon (Si), whose tribological properties are not good. In this paper, we present a short investigation of nano- and micro-tribological properties of diamond-like carbon (DLC) nano-dot surfaces. The investigation was undertaken to evaluate the potential of these surfaces for their possible application to the miniaturized devices. The tribological evaluation of the DLC nano-dot surfaces was done in comparison with bare Si (1 0 0) surfaces and DLC coated silicon surfaces. A commercial atomic force microscope (AFM) was used to measure adhesion and friction properties of the test materials at the nano-scale, whereas a custom-built micro-tribotester was used to measure their micro-friction property. Results showed that the DLC nano-dot surfaces exhibited superior tribological properties with the lowest values of adhesion force, and friction force both at the nano- and micro-scales, when compared to the bare Si (1 0 0) surfaces and DLC coated silicon surfaces. In addition, the DLC nano-dot surfaces showed no observable wear at the micro-scale, unlike the other two test materials. The superior tribological performance of the DLC nano-dot surfaces is attributed to their hydrophobic nature and the reduced area of contact projected by them.  相似文献   

9.
This paper reports that DLC (diamond like carbon)/Ti and DLC films were prepared by using pulsed laser arc deposition. R-ray diffraction, Auger electron spectroscopy, Raman spectroscopy, atomic force microscopy, nanoindenter, spectroscopic ellipsometer, surface profiler and micro-tribometer were employed to study the structure and tribological properties of DLC/Ti and DLC films. The results show that DLC/Ti film, with $I(D)/I(G)$ 0.28 and corresponding to 76{\%} sp$^{3}$ content calculated by Raman spectroscopy, uniform chemical composition along depth direction, 98 at{\%} content of carbon, hardness 8.2 GPa and Young's modulus 110.5 GPa, compressive stress 6.579 GPa, thickness 46~nm, coefficient of friction 0.08, and critical load 95mN, exhibits excellent mechanical and tribological properties.  相似文献   

10.
During the last two decades, the industry (including scientists) has focused on diamond-like carbon (DLC) coating because of its wide range of application in various fields. This material has numerous applications in mechanical, electrical, tribological, biomedical, and optical fields. Severe friction and wear in some machine parts consumes high amount of energy, which makes the process energy inefficient. Thus, DLC coating can be an effective means to lower the friction and wear rate. Some important process variables that affect the tribological characteristics of DLC coating are adhesion promoter intermediate layer, substrate surface roughness, hydrogen incorporation or hydrogen non involvement, and coating deposition parameters (e.g., bias voltage, etching, current, precursor gas, time, and substrate temperature). Working condition of DLC-coated parts also affects the tribological characteristics, such as temperature, sliding speed and load, relative humidity, counter surface, and lubrication media (DLC additive interaction). Different types of lubricated oils and additives are used in engine parts to minimize friction and wear. DLC can be coated to the respective engine parts; however, DLC does not behave accordingly after coating because of lubricant oil and additive interaction with DLC. Some additive interacts positively and some behave negatively because of the tribochemical reactions between DLC coating and additives. Numerous conflicting views have been presented by several researchers regarding this coating additive interaction, resulting in unclear determination of true mechanism of such interaction. However, lubricant additive has been established to be more inert to DLC coating compared with uncoated metal surface because the additive is fabricated in such a way that it can react with metal surfaces. In this article, the tribological characteristics of different types of DLC coating in dry and lubricated conditions will be presented, and their behavior will be discussed in relation to working condition and processing parameters.  相似文献   

11.
The nitrogen-doped diamond-like carbon (DLC) films were deposited on high speed steel (HSS) substrates in the direct current unbalanced magnetron sputtering system. Sulphurized layer was formed on the surface of DLC films by means of liquid sulfidation in the intermixture of urea and thiourea solution in order to improve the tribological properties of DLC films. The influence of sulfidation treatment on the structure and tribological properties of DLC films was investigated in this work. The structure and wear surface morphology of DLC films were analyzed by Raman spectroscopy, XPS and SEM, respectively. It reveals that the treated films are smooth and uniform; and sulfur atoms are bonded chemically. The treated films have broader distribution of Raman spectra in the range of 1000-1800 cm−1 and higher ID/IG ratio than the untreated films as a result of the appearance of the crystalline graphite structure after the sulfidation treatment. It is showed that the sp2 relative content increase in the treated films from the XPS measurement. The Raman results are consistent with the XPS results. The tribological properties of DLC films were investigated using a ball-on-disk rotating friction and wear tester under dry friction conditions. It is found that the sulfidation concentration plays an important part in the tribological properties of the treated DLC films. The results showed the treated films with low sulfidation concentration have a lower friction coefficient (0.1) than the treated films with high sulfidation concentration (0.26) and the untreated films (0.27) under the same friction testing conditions, which can be attributed to both the presence of sulfur-containing materials and the forming of the mechanical alloyed layer on the wear surface. Adding the dry nitrogen to the sliding surface in the testing system helps the friction coefficient of the treated films with low sulfidation concentration to decrease to 0.04 further in this work. On the basis of the experimental results, it is indicated that the liquid sulfidation technique, which is low-cost, non-polluting and convenience, would be an appropriate method for the surface treatment of DLC films.  相似文献   

12.
Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to −200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at −100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.  相似文献   

13.
The radius of atomic force microscope (AFM) tip is a key factor that influences nonspecific interactions between AFM tip and nanoparticles. Generally, a tip with larger radius contributes to a higher efficiency of picking up nanoparticles. We provide two methods for modifying the AFM tip: one is to wear a tip apex on a solid substrate and the other is to coat a tip with poly (dimethylsiloxane) (PDMS). Both the approaches can enhance the adhesion force between the tip and nanoparticles by increasing tip radius. The experimental results show that a modified tip, compared to an unmodified one, achieves six-fold efficiency improvement in the capture of targeted colloidal gold nanoparticles.  相似文献   

14.
A real-time nanomanipulation technique inside a scanning electron microscope (SEM) has been used to investigate the elastic and frictional (tribological) properties of zinc oxide nanowires (NWs). A NW was translated over a surface of an oxidised silicon wafer using a nanomanipulator with a glued atomic-force microscopic tip. The shape of the NW elastically deformed during the translation was used to determine the distributed kinetic friction force. The same NW was then positioned half-suspended on edges of trenches cut by a focused ion beam through a silicon wafer. In order to measure Young’s modulus, the NW was bent by pushing it at the free end with the tip, and the interaction force corresponding to the visually observed bending angle was measured with a quartz tuning fork force sensor.  相似文献   

15.
Diamond-like carbon (DLC) films were prepared on silicon substrates by liquid phase electrodeposition from a mixture of acetonitrile and deionized water. The deposition voltage was clearly reduced owing to the presence of deionized water in the electrolyte by changing the basic properties (dielectric constant and dipole moment) of the electrolyte. Raman spectra reveal that the ratio of sp3/sp2 in the DLC films is related to the concentration of acetonitrile. The surface roughness and grain morphology determined by atomic force microscopy are also influenced by the concentration of the acetonitrile. The UMT-2 universal micro-tribometer was used to test the friction properties of the DLC films obtained from electrolytes with different concentration. The results convey that the DLC film prepared from the electrolyte containing 10 vol.% acetonitrile has the better surface morphology and friction behavior comparing with the other. In addition the growth mechanism of the film was also discussed.  相似文献   

16.
Zinc oxide (ZnO) nanowires have attracted great interest in nanodevices. In this work, the tribological characteristics of vertically grown ZnO nanowires obtained by metalorganic chemical vapor deposition were investigated by using an atomic force microscope (AFM). The ZnO nanowires were slid against flattened silicon and diamond-coated AFM probes under 50–150 nN normal force while monitoring the frictional force. The wear of the ZnO nanowires was observed by a scanning electron microscope and quantified based on Archard’s wear law. Also, the wear debris accumulated on the silicon probe was analyzed by using a transmission electron microscope (TEM). The results showed that the wear of ZnO nanowires slid against the silicon probe was extremely small. However, when the ZnO nanowires were slid against the diamond-coated probe, the wear coefficients ranged from 0.006 to 0.162, which correspond to the range of severe wear at the macroscale. It was also shown that the friction coefficient decreased from 0.30 to 0.25 as the sliding cycles increased. From TEM observation, it was found that the ZnO wear debris was mainly amorphous in structure. Also, crystalline ZnO nanoparticles were observed among the wear debris. PACS  07.79.Lh; 46.55.+d; 81.07.Bc  相似文献   

17.
We investigate atomic scale friction between clean graphite surfaces by using molecular dynamics. The simulation reproduces atomic scale stick-slip motion and a low frictional coefficient, both of which are observed in experiments using frictional force microscope. It is made clear that the microscopic origin of low frictional coefficients of graphite lies on the honeycomb structure of each layer, not only on the weak interlayer interaction as believed so far.  相似文献   

18.
Tribological efficiency of industrial applications involving boundary lubrication regime can be improved to an appreciable extent by the deposition of hard coatings on interacting surfaces. Among such coatings, diamond-like carbon (DLC) coatings are considered to be one of the most suitable ones for the said role. DLC coatings possess a unique combination of physical, chemical, and material properties due to which they can help in minimizing friction-induced energy and material losses even under starved lubrication conditions. Since commercial lubricants are optimized for steel surfaces, therefore, a lot of experimental investigations were carried out to analyze the tribological compatibility of these lubricants with various DLC coatings. However, there is still a lack of understanding about how DLC coatings interact with conventional lubricant additives. Some researchers reported tribologically beneficial interactions between DLC coatings and formulated lubricants while others observed no such behavior. To address these inconsistencies, there is a need to rearrange the published data in a more apprehensible and organized manner with a special emphasis on the mechanisms responsible for a particular tribological behavior. In this way, it can be determined whether synergistic or antagonistic correlation exists between a particular DLC-lubricant combination and research on DLC coatings can be continued in a logical way. In this article, most widely investigated non-doped DLC coatings (ta-C, a-C:H, a-C, and ta-C:H) are tribologically analyzed. Average values of friction and wear coefficients are calculated for various DLC-lubricant combinations using already published data and compared to quantify the effectiveness of a particular lubricant additive in enhancing tribological characteristics of symmetrical non-doped DLC contacts. Moreover, tribological performance parameters of non-doped DLC coatings are compared with those of doped-DLC coatings to understand differences in their tribological behavior in combination with additives.  相似文献   

19.
This study examined the friction and wear behavior of diamond-like carbon (DLC) films deposited from a radio frequency glow discharge using a hydrogen diluted benzene gas mixture. The DLC films were deposited on Si (1 0 0) and polished stainless steel substrates by radio frequency plasma-assisted chemical vapor deposition (r.f.-PACVD) at hydrogen to benzene ratios, or the hydrogen dilution ratio, ranging from 0 to 2.0. The wear test was carried out in both ambient and aqueous environments using a homemade ball-on-disk type wear rig. The stability of the DLC coating in an aqueous environment was improved by diluting the benzene precursor gas with hydrogen, suggesting that hydrogen dilution during the deposition of DLC films suppressed the initiation of defects in the film and improved the adhesion of the coating to the interface.  相似文献   

20.
This paper discusses the seawater and saline solutions effects on the tribological behavior of diamond-like carbon (DLC) films. The adsorption of Fe on DLC surface is one of the mechanisms that is believed to be the cause of the decrease in dispersive component of the surface energy and increase of the ID/IG ratio leading to low friction coefficient and wear rate under corrosive environments. Tribological behaviors DLC films were experimentally evaluated under corrosive environments by using steel ball and DLC coated steel flat under rotational sliding conditions. The DLC films were prepared on 440 stainless steel disks by DC-pulsed PECVD using methane as a precursor gas. Two different set of tribological system was assembled, one when the liquids and the pairs were put inside of a stainless steel vessel and others inside of a PTFE. Every tribological test was performed under 10 N normal load120 mms? 1 of sliding speed. The friction coefficients were evaluated during 1000 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号