首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We investigate the ground states of spin-1 Bose–Einstein condensates (BECs) with spin–orbit coupling in a radiallyperiodic potential by numerically solving the coupled Gross–Pitaevskii equations. In the radially periodic potential, wefirst demonstrate that spin–orbit-coupled antiferromagnetic BECs support a multiring petal phase. Polar–core vortex canbe observed from phase profiles, which is manifested as circularly symmetric distribution. We further show that spin–orbitcoupling can induce multiring soliton structure in ferromagnetic BECs. It is confirmed especially that the wave-functionphase of the ring corresponding to uniform distribution satisfies the rotational symmetry, and the wave-function phase ofthe ring corresponding to partial splitting breaks the rotational symmetry. Adjusting the spin–orbit coupling strength cancontrol the number of petal in antiferromagnetic BECs and the winding numbers of wave-function in ferromagnetic BECs.Finally, we discuss effects of spin-independent and spin-dependent interactions on the ground states.  相似文献   

2.
Motivated by recent experimental realization of synthetic spin–orbit coupling in neutral quantum gases, we consider the quasi-two-dimensional rotating two-component Bose–Einstein condensates with anisotropic Rashba spin–orbit coupling subject to concentrically coupled annular potential. For experimentally feasible parameters, the rotating condensate exhibits a variety of rich ground state structures by varying the strengths of the spin–orbit coupling and rotational frequency.Moreover, the phase transitions between different ground state phases induced by the anisotropic spin–orbit coupling are obviously different from the isotropic one.  相似文献   

3.
We study solitons in a spin-1 Bose–Einstein condensates with SU(3) spin–orbit coupling. We obtain the ground state and the metastable solution for solitons with attractive interactions by the imaginary-time evolution method. Compared with the SU(2) spin–orbit coupling, it is found that the solitons in SU(3) spin–orbit coupling show a new feature due to breaking the symmetry. The solitons called the composite solitons have mixing manifolds of ferromagnetic and antiferromagnetic states. This has stimulated people to study the topological excitation properties of SU(3) spin–orbit coupling and it is expected to find new quantum phases.  相似文献   

4.
We consider a SU(3) spin–orbit coupled Bose–Einstein condensate confined in a harmonic plus quartic trap.The ground-state wave functions of such a system are obtained by minimizing the Gross–Pitaevskii energy functional, and the effects of the spin-dependent interaction and spin–orbit coupling are investigated in detail.For the case of ferromagnetic spin interaction, the SU(3) spin–orbit coupling induces a threefold-degenerate plane wave ground state with nontrivial spin texture.For the case of antiferromagnetic spin interaction, the system shows phase separation for weak SU(3) spin–orbit coupling, where three discrete minima with unequal weights in momentum space are selected, while hexagonal honeycomb lattice structure for strong SU(3) SOC, where three discrete minima with equal weights are selected.  相似文献   

5.
We investigate modulational instability(MI) of a coupled two-component Bose–Einstein condensates in a rotating ring trap. The excitation spectrum and the MI condition of the system are presented analytically. We find that the coupling between the two components strongly modifies the MI condition, and the MI condition is phase-dependent.Furthermore, we discuss the effect of MI on both density excitation and spin excitation. If the inter- and intra-component interaction strengths are all equal, the MI causes density excitation but not spin excitation, and if the inter- and intracomponent interaction strengths are different, the MI causes both density excitation and spin excitation. Our results provide a promising approach for controlling the stability and excitation of a rotating two-component Bose–Einstein condensates by modulating its coupling strength and interaction strength.  相似文献   

6.
We propose a scheme to generate maximally entangled states of two distant Bose–Einstein condensates,which are trapped in different potential wells of a one-dimensional optical lattice. We show how such maximally entangled state can be used to test the Bell inequality and realize quantum teleportation of a Bose–Einstein condensate state. The scheme proposed here is based on the interference of Bose-Einstein condensates leaking out from different potential wells of optical lattice. It is briefly pointed out that this scheme can be extended to generate maximally entangled Greenberger–Horne–Zeilinger(GHZ) states of 2m(m 1) distant Bose–Einstein condensates.  相似文献   

7.
Liquid helium 4 had been the only bosonic superfluid available in experiments for a long time. This situation was changed in 1995, when a new superfluid was born with the realization of the Bose–Einstein condensation in ultracold atomic gases. The liquid helium 4 is strongly interacting and has no spin; there is almost no way to change its parameters,such as interaction strength and density. The new superfluid, Bose–Einstein condensate(BEC), offers various advantages over liquid helium. On the one hand, BEC is weakly interacting and has spin degrees of freedom. On the other hand, it is convenient to tune almost all the parameters of a BEC, for example, the kinetic energy by spin–orbit coupling, the density by the external potential, and the interaction by Feshbach resonance. Great efforts have been devoted to studying these new aspects, and the results have greatly enriched our understanding of superfluidity. Here we review these developments by focusing on the stability and critical velocity of various superfluids. The BEC systems considered include a uniform superfluid in free space, a superfluid with its density periodically modulated, a superfluid with artificially engineered spin–orbit coupling, and a superfluid of pure spin current. Due to the weak interaction, these BEC systems can be well described by the mean-field Gross–Pitaevskii theory and their superfluidity, in particular critical velocities, can be examined with the aid of Bogoliubov excitations. Experimental proposals to observe these new aspects of superfluidity are discussed.  相似文献   

8.
张华峰  陈方  郁春潮  孙利辉  徐大海 《中国物理 B》2017,26(8):80304-080304
Properties of the ground-state solitons, which exist in the spin–orbit coupling(SOC) Bose–Einstein condensates(BEC) in the presence of optical lattices, are presented. Results show that several system parameters, such as SOC strength,lattice depth, and lattice frequency, have important influences on properties of ground state solitons in SOC BEC. By controlling these parameters, structure and spin polarization of the ground-state solitons can be effectively tuned, so manipulation of atoms may be realized.  相似文献   

9.
乔雷  迟诚 《中国物理 B》2017,26(12):120304-120304
We study the properties of superfluid in a two-dimensional(2 D) polarized Fermi gas with spin–orbit coupling and adiabatic rotation which are trapped in a harmonic potential. Due to the competition between polarization, spin–orbit coupling, and adiabatic rotation, the Fermi gas exhibits many intriguing phenomena. By using the Bardeen–Cooper–Schrieffer(BCS) mean-field method with local density approximation, we investigate the dependence of order parameter solution on the spin–orbit coupling strength and the rotation velocity. The energy spectra with different rotation velocities are studied in detail. Besides, the conditions for the zero-energy Majorana fermions in topological superfluid phase to be observed are obtained. By investigating distributions of number density, we find that the rotation has opposite effect on the distribution of number density with different spins, which leads to the enhancement of the polarization of Fermi gas. Here,we focus on the region of BCS pairing and ignore the Fulde–Ferrell–Larkin–Ovchinnikov state.  相似文献   

10.
《中国物理 B》2021,30(6):66702-066702
We study the properties of Bose–Einstein condensates under a non-Hermitian spin–orbit coupling(SOC), induced by a dissipative two-photon Raman process. We focus on the dynamics of the condensate at short times, when the impact of decoherence induced by quantum jumps is negligible and the dynamics is coherently driven by a non-Hermitian Hamiltonian. Given the significantly modified single-particle physics by dissipative SOC, the interplay of non-Hermiticity and interaction leads to a quasi-steady-state phase diagram different from its Hermitian counterpart. In particular, we find that dissipation can induce a phase transition from the stripe phase to the plane-wave phase. We further map out the phase diagram with respect to the dissipation and interaction strengths, and finally investigate the stability of quasi-steady states through the time-dependent dissipative Gross–Pitaevskii equation. Our results are readily accessible based on standard experiments with synthetic spin–orbit couplings.  相似文献   

11.
We study trapped 2D atomic Bose-Einstein condensates with spin-independent interactions in the presence of an isotropic spin-orbit coupling, showing that a rich physics results from the nontrivial interplay between spin-orbit coupling, confinement and interatomic interactions. For low interactions two types of half-vortex solutions with different winding occur, whereas strong-enough repulsive interactions result in a stripe-phase similar to that predicted for homogeneous condensates. Intermediate interaction regimes are characterized for large enough spin-orbit coupling by an hexagonally-symmetric phase with a triangular lattice of density minima similar to that observed in rapidly rotating condensates.  相似文献   

12.
Hao Zhu 《中国物理 B》2022,31(4):40306-040306
We investigate the vortex structures excited by Ioffe-Pritchard magnetic field and Dresselhaus-type spin-orbit coupling in F=2 ferromagnetic Bose-Einstein condensates. In the weakly interatomic interacting regime, an external magnetic field can generate a polar-core vortex in which the canonical particle current is zero. With the combined effect of spin-orbit coupling and magnetic field, the ground state experiences a transition from polar-core vortex to Mermin-Ho vortex, in which the canonical particle current is anticlockwise. For fixed spin-orbit coupling strengths, the evolution of phase winding, magnetization, and degree of phase separation with magnetic field are studied. Additionally, with further increasing spin-orbit coupling strength, the condensate exhibits symmetrical density domains separated by radial vortex arrays. Our work paves the way to explore exotic topological excitations in high-spin systems.  相似文献   

13.
The QCD sum rules for spin-dependent nucleon-nucleon (N N) and hyperon-nucleon (Y N) interactions are formulated and their physical implications are clarified. A dispersion integral around the nucleon threshold can be identified as a measure of interaction strength. Calculating the operator product expansion (OPE) of the correlation function, we have found that the spin-dependent operators are related to the axial and tensor charges. The obtained sum rules relate the interaction strengths to the nucleon matrix elements of the quark-gluon operators. The spin-dependent parts are smaller than the spin-independent parts in the N N and the Y N channels. The spin-independent N N interaction strength is greater than the spin-independent Y N interaction strengths. The results are consistent with the empirical result in the N N channel.  相似文献   

14.
研究囚禁在环形势中的Rashba自旋轨道耦合玻色-爱因斯坦凝聚体在六极子磁场中的基态特性。在这种情况下,磁场破坏了自旋轨道耦合哈密顿量的旋转对称性,但系统仍具有2π/3的离散对称性。数值结果发现:在弱相互作用情况下,六极子磁场和Rashba自旋轨道耦合使环形囚禁的凝聚体呈类六边形的基态密度分布,当磁场强度超过某一临界值时,凝聚体将崩塌;在强相互作用情况下,半量子涡旋出现在凝聚体中,且被六极子磁场钉在方位角Ф=nπ/3的径向位置,涡旋的旋转方向取决于径向磁场的方向。  相似文献   

15.
International Journal of Theoretical Physics - We consider the stationary state of a spin-orbit coupled (SOC) binary Bose-Einstein condensates with dipole-dipole interaction (DDI). Our results are...  相似文献   

16.
International Journal of Theoretical Physics - The ground state phases of spin-1 Bose-Einstein condensates with Rashba spin-orbit coupled (SOC) and dipole-dipole interaction (DDI) are studied....  相似文献   

17.
In this paper, we prove analytically that the plane-wave Bose-Einstein condensates with spin-orbit coupling are stable in two dimensions at zero temperature. The SOC induced extra breaking of the O(2) symmetry of the ground state makes the goldstone modes more divergent in the infrared limit. But the depletions are still finite, which means the condensates are stable.  相似文献   

18.
李志  张爱霞  马娟  薛具奎 《中国物理 B》2010,19(10):100306-100306
The energy band structure of spin-1 condensates with repulsive spin-independent and either ferromagnetic or antiferromagnetic spin-dependent interactions in one-dimensional (1D) periodic optical lattices is discussed. Within the two-mode approximation, Bloch bands of spin-1 condensates are presented. The results show that the Bloch bands exhibit a complex structure as the atom density of m F=0 hyperfine state increases: bands splitting, reversion, intersection and loop structure are excited subsequently. The complex band structure should be related to the tunneling and spin-mixing dynamics.  相似文献   

19.
We examine the combined effects of Rashba spin-orbit (SO) coupling and rotation on trapped spinor Bose-Einstein condensates. The nature of single particle states is thoroughly examined in the Landau level basis and is shown to support the formation of a half-quantum vortex. In the presence of weak s-wave interactions, the ground state at strong SO coupling develops ringlike structures with domains whose number shows step behavior with increasing rotation. For the fast rotation case, the vortex pattern favors a triangular lattice, accompanied by density depletion in the central region and a weakened Skyrmionic character as the SO coupling is enhanced. Giant vortex formation is facilitated when SO coupling and rotation are both strong.  相似文献   

20.
贺丽  余增强 《物理学报》2017,66(22):220301-220301
各向异性超流体中的朗道临界速度并非简单地由运动方向的元激发能谱决定.在自旋-轨道耦合作用下的双分量玻色-爱因斯坦凝聚中,当系统跨过平面波相与零动量相之间的量子相变时,尽管超流声速连续变化,但垂直于自旋-轨道耦合方向的朗道临界速度会出现跳变,跳变幅度随自旋相互作用强度单调增加.根据线性响应理论,计算了凝聚体中运动杂质在不同速度下的能量耗散率,提出可以通过能量耗散观测临界速度在量子相变处的不连续性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号