首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Optical frequency combs generated by femtosecond fiber lasers typically exhibit significant frequency noise that causes broad optical linewidths, particularly in the comb wings and in the carrier-envelope offset frequency (f(ceo)) signal. We show these broad linewidths are mainly a result of white amplitude noise on the pump diode laser that leads to a breathing-like motion of the comb about a central fixed frequency. By a combination of passive noise reduction and active feedback using phase-lead compensation, this noise source is eliminated, thereby reducing the f(ceo) linewidth from 250 kHz to <1 Hz. The in-loop carrier-envelope offset phase jitter, integrated to 100 kHz, is 1.3 rad.  相似文献   

2.
We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.  相似文献   

3.
冯晋霞  杜京师  靳晓丽  李渊骥  张宽收 《物理学报》2018,67(17):174203-174203
音频段压缩态光场是进行连续变量量子精密测量重要的量子资源.本文利用自制的低噪声连续单频671 nm/1.34μm双波长激光器作为抽运源,抽运基于周期极化磷酸氧钛钾晶体的简并光学参量振荡器,进行了光通信波段1.34μm连续变量音频段真空压缩态光场的实验制备.当简并光学参量振荡器运转于阈值以下参量反放大状态时,抽运光场功率为95 mW,本地振荡光功率为60μW时,在分析频率8—100 k Hz范围内研制出1.34μm真空压缩态光场.在分析频率36 k Hz处,压缩态光场的最大压缩度达5.0 d B;在音频频率8k Hz处,压缩态光场的压缩度达3.0 d B.音频段1.34μm压缩态光场可用于实现基于光纤的量子精密测量.  相似文献   

4.
刘硕  白建东  王杰英  何军  王军民 《物理学报》2019,68(7):73201-073201
基于成熟的光纤激光器、光纤放大器及高效激光频率转换技术,我们在实验中研制了一套瓦级输出的窄线宽连续波单频可调谐318.6 nm紫外激光系统,并在室温铯原子气室中实现了6S_(1/2)—nP_(3/2)(n=70—94)单光子跃迁里德伯激发.借助由铯原子6S_(1/2)(F=4)基态、6P_(3/2)(F′=5)激发态和nP_(3/2)(n=70—94)里德伯态构成的V型三能级系统,通过频率锁定于铯原子6S_(1/2)(F=4)—6P_(3/2)(F′=5)超精细跃迁的852.3 nm探测光束的吸收减弱信号获得了里德伯态的信息,并利用高精度波长计测量了铯原子nP_(3/2)(n=70—94)里德伯态的量子亏损值.经过与理论计算值的变化趋势进行对比,我们认为由于原子气室的里德伯屏蔽效应并不能完全屏蔽外部直流电场,铯原子气室内存在残余的直流电场,影响了对里德伯态的量子亏损值的实验测量.利用残余直流电场的Stark效应理论模型及其与有效主量子数n*的依赖关系,对铯原子里德伯态的量子亏损实验测量值进行了修正.修正后的铯原子nP_(3/2)(n=70—94)态量子亏损测量值为3.5591±0.0007,与理论计算值相吻合.  相似文献   

5.
We report a simple technique to suppress high-frequency phase noise of a Yb-based fiber optical frequency comb using an active intensity noise servo. Out-of-loop measurements of the phase noise using an optical heterodyne beat with a cw laser show suppression of phase noise by ≥7?dB out to Fourier frequencies of 100?kHz with a unity-gain crossing of ~700?kHz. These results are enabled by the strong correlation between the intensity and phase noise of the laser. Detailed measurements of intensity and phase noise spectra, as well as transfer functions, reveal that the dominant phase and intensity noise contribution above ~100?kHz is due to amplified spontaneous emission or other quantum noise sources.  相似文献   

6.
Fluorescence loss spectrum for detecting cold Rydberg atoms with high sensitivity has been obtained based on lock-in detection of fluorescence of 6 P_(3/2) state when cooling lasers of the magneto-optical trap are modulated. The experiment results show that the signal to noise ratio has been improved by 32.64 dB when the modulation depth(converted to laser frequency) and frequency are optimized to 4 MHz and 6 kHz, respectively. This technique enables us to perform a highly sensitive non-destructive detection of Rydberg atoms.  相似文献   

7.
We demonstrate a three-step laser stabilization scheme for excitation to nP and nF Rydberg states in 85Rb, with all three lasers stabilized using active feedback to independent Rb vapor cells. The setup allows stabilization to the Rydberg states 36P3/2–70P3/2 and 33F7/2–90F7/2, with the only limiting factor being the available third step laser power. We study the scheme by monitoring the three laser frequencies simultaneously against a self-referenced optical frequency comb. The third step laser, locked to the Rydberg transition, displays an Allan deviation of 30 kHz over 1 second and <80 kHz over 1 hour. The scheme is very robust and affordable, and it would be ideal for carrying out a range of quantum information experiments.  相似文献   

8.
We present a phase coherent laser system with ultra-low phase noise with a frequency difference of 6.9 GHz. The laser system consists of two extended-cavity diode lasers that are optically phase-locked with electrical feedback to the injection current of a slave laser. The bandwidth of the optical phase-locking loop is extended up to 8 MHz. We achieve the residual phase noise of two phase-locked lasers of below ?120 dBrad2/Hz in the offset frequency range of 100 Hz–350 kHz and a flat phase noise of ?127 dBrad2/Hz from 700 Hz to 20 kHz. These results are, to the best of our knowledge, the lowest phase noise level ever reported with two extended-cavity diode lasers.  相似文献   

9.
白景旭  韩小萱  白素英  焦月春  赵建明  贾锁堂 《物理学报》2018,67(23):233201-233201
本文主要从理论和实验上研究超冷铯(60D5/22 Rydberg分子的双色光缔合光谱.数值计算了铯60D5/2 Rydberg原子对态的长程电多极相互作用和(60D5/22 Rydberg分子的绝热势能曲线,获得了(60D5/22 Rydberg分子的势阱深度和平衡间距.实验上利用双色光缔合超冷铯原子的方法制备了(60D5/22 Rydberg分子.其中,第一色激光(pulse-A)双光子共振激发种子Rydberg原子A;第二色激光(pulse-B,失谐于分子的束缚能)共振激发第二个Rydberg原子B,原子A与B由分子势阱束缚形成超冷(60D5/22 Rydberg分子.由脉冲场电离探测技术获得Rydberg分子的光缔合光谱,测量的Rydberg分子的势阱深度与理论计算结果相一致.  相似文献   

10.
窄线宽激光器的线宽表征方式通常采用延时自外差法测量技术。该技术是通过延时光纤差拍产生一个与待测激光线宽相关的洛伦兹频谱,因此该频谱只具有单一的线宽表现形式。为了能够观察到激光器的线宽和频率噪声在其傅里叶频率分布下的完整特性,报道了一种基于β算法计算窄线宽激光器线宽的方法。该方法是结合频率噪声中的白噪声和1/f噪声分别诱导不同激光线型的理论,从而确定激光线宽。首先,对β算法的基本原理进行了详细的分析说明。通过基于维纳-辛钦定理,分析了窄线宽激光器不同频率范围内的频率噪声和激光线宽的依赖关系。阐明了在截止频率趋于0和无穷大的两个范围条件时,激光频谱特性从高斯线型向洛伦兹线型演变。同时推导出使两种线型转换的截止频率表达式,并将其转换为频率噪声函数,该函数定义为β分子线。此时频率噪声分量中高斯线型的总和即为激光线宽计算公式;其次,对窄线宽激光器的频率噪声和激光线型进行数值仿真。将通过OEwaves公司的OE4000互相关零差相位/频率噪声自动测试系统测得的频率噪声谱密度,带入β算法理论公式中。结果显示:1/f噪声导致激光呈现高斯线型,线宽随截止频率的增加而增大。而白噪声将导致洛伦兹线型,线宽不再随截止频率而改变。此外,在低频区域,频率噪声电平远大于其傅里叶频率,噪声调制系数较高,该部分噪声可以决定线宽大小。因此,高斯线型区域对应的频率噪声的积分,即为待测激光器的线宽;在高频区域,频率噪声电平与其傅里叶频率相差较小,频率波动较快,噪声对线宽影响可以忽略。并且频率带宽在截止频率范围内,计算的线宽误差较小。最后,实验上运用β算法对RIO公司的1 550 nm低噪声窄线宽激光器的频率噪声功率谱密度进行积分计算,成功获得了其不同傅里叶频率分布下对应的激光线宽值。其中β分子线将频率噪声中的白噪声和1/f噪声分隔两部分:当频率噪声谱密度大于β分子线时,激光即为高斯线型,线宽随频率积分带宽的增加而减少;而频率噪声谱密度小于β分子线时,激光呈现洛伦兹线型,线宽为定值不再改变。同时为了对β算法进行实验验证,搭建了延迟光纤为50 km、移频频率为60 MHz的延时自外差法测量系统。对注入电流为110 mA的RIO 1 550 nm低噪声窄线宽激光器的线宽进行实验测量,测量结果表明激光线宽为1.8 kHz,与上述β算法中2.8 kHz的频率带宽积分结果一致。充分证明了此算法的准确性。β算法可以对任意类型的窄线宽激光器进行线宽表征,对窄线宽激光器的研究具有重要意义。  相似文献   

11.
首次报道了钠分子一系列里德堡能级的无多普勒加宽光光三共振(DF-OOTR)激发荧光光谱,测量了其谱线宽度和其谱线位置随温度、外加气体压力的变化情况。结果表明,钠分子里德堡能级(n=5~8)的自然宽度(含均匀加宽)在60~130MHz之间,其大小主要与主量子数n有关。随钠原子浓度增大(温度升高),或外加Ar气压力增大时,钢分子各个里德堡能级谱线均出现红移,数量在100MHz/τ之内,但位移速率大小不一。  相似文献   

12.
A narrow-linewidth cw 5 μm source based on difference frequency generation of a 1.3 μm quantum dot external cavity diode laser and a cw Nd:YAG laser in periodically poled MgO:LiNbO(3) has been developed and evaluated for spectroscopic applications. The source can be tuned to any frequency in the 5.09-5.13 μm range with an output power up to 0.1 mW, and in the 5.42-5.48 μm range with sub-microwatt output. The output frequency is stabilized and its value determined by measuring the frequency of the two lasers with a remotely located frequency comb. A frequency instability of less than 4 kHz for long integration times and a linewidth smaller than 700 kHz were obtained.  相似文献   

13.
We theoretically propose a new method for generating intense isolated attosecond pulses during high-order harmonic generation (HHG) process by accurately controlling electron motion with a two-color laser field,which consists of an 800-nm,4-fs elliptically polarized laser field and a 1400-nm,~43-fs linearly polarized laser field.With this method,the supercontinua with a spectral width above 200 eV are obtained,which can support a ~15-as isolated pulse after phase compensation.Classical and quantum analyses explain the controlling effects well.In particular,when the pulse duration of the 800-nm laser field increases to 20-fs,sub-100-as isolated pulses can be obtained even without any phase compensation.  相似文献   

14.
The timing jitter, optical phase noise, and carrier-envelope offset (CEO) noise of passively mode-locked lasers are closely related. New key results concern analytical calculations of the quantum noise limits for optical phase noise and CEO noise. Earlier results for the optical phase noise of actively mode-locked lasers are generalized, particularly for application to passively mode-locked lasers. It is found, for example, that mode locking with slow absorbers can lead to optical linewidths far above the Schawlow–Townes limit. Furthermore, mode-locked lasers can at the same time have nearly quantum-limited timing jitter and a strong optical excess phase noise. A feedback timing stabilization via cavity length control can, depending on the situation, reduce or greatly increase the optical phase noise, while not affecting the CEO noise. Besides presenting such findings, the paper also tries to clarify some basic aspects of phase noise in mode-locked lasers. PACS 42.50.Lc; 42.60.Fc  相似文献   

15.
The natural linewidths and line shapes due to quantum phase and quantum amplitude noise have been investigated above, within and below the threshold region of laser operation using a Fourier spectroscopic technique. Outside the threshold region the linewidths of the laser spectrum were found to be inversely proportional to the laser power, and measurements confirm the “factor of two” difference in the linewidth equation. Within the threshold region the results are in agreement with calculations of Hempstead, Lax and Risken. A Mach-Zehnder interferometer with optical path differences up to 1500 meters was used for the measurements. The method of investigation combines a high spectral resolution with a good signal-to-noise ratio. The method is suited to linewidth measurements of a laser both above and below threshold and allows the technical and natural linewidths to be clearly distinguished.  相似文献   

16.
The frequency noise properties of commercial distributed feedback quantum cascade lasers emitting in the 4.6 μm range and operated in cw mode near room temperature (277 K) are presented. The measured frequency noise power spectral density reveals a flicker noise dropping down to the very low level of <100 Hz(2)/Hz at 10 MHz Fourier frequency and is globally a factor of 100 lower than data recently reported for a similar laser operated at cryogenic temperature. This makes our laser a good candidate for the realization of a mid-IR ultranarrow linewidth reference.  相似文献   

17.
We characterized the phase and amplitude noise of a mirror-dispersion-controlled 10-fs Ti:sapphire laser pumped by a frequency-doubled cw diode-pumped Nd:YVO4 laser and compared with these of the Ti:sapphire laser pumped by an Ar-ion laser. The rms timing jitters and rms amplitude noise for the all-solid-state and Ar-ion laser pumped Ti:sapphire lasers are calculated to be 0.31 ps rms and 0.71 ps rms and 0.15% rms and 0.32% rms, in the frequency range from 20 kHz to 400 kHz, respectively. The phase and amplitude noise characteristics of the Ti:sapphire laser were greatly improved by using the diode-pumped solid state laser as a pump source.  相似文献   

18.
Realization of practical quantum memory and optical signal processing systems critically depends on suitable materials that offer specific combinations of properties. Solid-state materials such as rare-earth ions doped into dielectric crystals are one of the most promising candidates for several quantum information storage protocols, including quantum storage of single photons. This article provides an overview of rare-earth-doped material properties and summarizes some of the most promising materials studied in our laboratory and by other groups for applications in quantum information storage and for ultra-wide bandwidth signal processing. Understanding and controlling spectral diffusion in these materials, which ultimately limits the achievable performance of any quantum memory system, is also briefly reviewed. Applications in quantum information impose stringent requirements on laser phase and frequency stability, and employing a narrow spectral hole in the inhomogeneous absorption profile in these materials as a frequency reference can dramatically improve laser stability. We review our work on laser frequency and phase stabilization and report our recent results on using a narrow spectral hole as a passive dynamic spectral filter for laser phase noise suppression, which can dramatically narrow the laser linewidth with or without the requirement of active feedback.  相似文献   

19.
An instrument achieving 100 KHz spectral precision using multiple correlation Fourier transform spectroscopy has been demonstrated. The instrument can measure the individual frequency comb modes of 100 MHz frequency comb lasers in air. The experiments show ~400,000 resolved modes at linewidths of 85 MHz in the region of 829 nm and ~ 182,000 resolved modes at linewidths of 28 MHz in the region of 1.5 μm, with a recording time of few minutes. The precision of the instrument, defined by the frequency positioning, attains sub‐MHz even when the scan is performed in air.  相似文献   

20.
王兴经  李昱 《光学学报》1996,16(12):829-1832
报道一种用作光通讯光源的外腔锁模多量子阱结构半导体激光器,其脉冲宽度2~5ps,波长调谐范围为1.52~1.57μm,锁模频率0.5~1.0GHz平均输出光功率为1mW。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号