首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
采用脉冲激光沉积法,在MgO(100)面上外延生长了FePt:MgO多层纳米复合薄膜,FePt成分为Fe48Pt52.FePt纳米颗粒周期性嵌埋于单晶MgO外延层中.原位反射式高能电子衍射分析结果表明,MgO外延层呈层状生长,而FePt纳米颗粒呈岛状生长.在整个FePt:MgO纳米复合薄膜的生长过程中,成功实现了层状-岛状生长模式的交替控制.高分辨透射电子显微镜分析结果表明,退火热处理后,结晶完整的L10-FePt纳米颗粒粒径约为5 nm,呈扁平六角形状,在MgO基底上形成逐层排列的纳米点阵.磁滞回线结果表明,退火后薄膜矫顽力增大,有序度提高,磁性增强.  相似文献   

3.
The influence of oxide additives on the magnetic and structural properties of FePt L10 thin films has been studied. FePt films with HfO2 additive grown on a 5 nm MgO buffer showed a primarily random texture for both as-deposited and annealed samples. The average grain size was limited to 10 nm and the perpendicular coercivity was 1.3 kOe for a 10 nm thick FePt +20% HfO2 film annealed at 650°C for 10 min. In direct contrast, MnO additive neither limited grain size nor L10 ordering in annealed FePt films. A 10 nm thick FePt+20% MnO film grown on a 5 nm MgO buffer showed a unique discontinuous microstructure composed of clusters of (0 0 1) textured L10 grains after being annealed at 650°C for 10 min. The average size of the grains making up these clusters was 50 nm and the perpendicular coercivity of the film exceeded 7 kOe.  相似文献   

4.
肖嘉星  鲁军  朱礼军  赵建华 《物理学报》2016,65(11):118105-118105
具有超强垂直磁各向异性的L10-MnxGa薄膜由于其与半导体材料结构及工艺的高度兼容性而受到广泛关注, 其超高垂直磁各向异性能和极低的磁阻尼因子预示着L10-MnxGa薄膜在高热稳定性自旋电子学器件中将发挥重要作用. 而L10-MnxGa超薄膜对于降低L10-MnxGa基垂直磁各向异性隧道结中的磁矩翻转临界电流密度有着重要的意义. 本文采用分子束外延的方法, 在半导体GaAs衬底上成功制备出了一系列不同厚度的L10-Mn1.67Ga薄膜, 厚度范围为1-5 nm. 生长过程中反射式高能电子衍射原位检测以及X射线衍射结果均表明了其良好的单晶相. 磁性测量结果表明, 厚度在1 nm以上的L10-Mn1.67Ga薄膜均可以保持垂直磁各向异性特征, 厚度为5 nm的L10-Mn1.67Ga薄膜的垂直磁各向异性能可达到14.7 Merg/cm3. 这些结果为基于L10-Mn1.67Ga的垂直磁各向异性隧道结在自旋转移扭矩驱动的磁随机存储器等低功耗器件的集成及应用提供了重要的实验支持.  相似文献   

5.
The effect of ultrathin Fe underlayer on the strong in-plane magnetization of FePt magnetic thin film was investigated. This FePt thin film could be attained using the ultrathin Fe underlayer with 1 nm thickness. The in-plane coercivity of FePt film with 20 nm thickness grown on ultrathin Fe underlayer was high up to 7400 Oe. However, its out-of-plane coercivity was extremely low to 350 Oe compared to those of FePt thin films in other conventional studies. This result indicates that FePt thin film was strongly in-plane magnetized by ultrathin Fe underlayer. The strong ordering phase transformation kinetics and the high texturing to in-plane direction of the FePt thin film by ultrathin Fe underlayer were confirmed by Kinetics Monte Carlo (KMC) simulation and XRD measurement result, respectively. It is also supposed that they are associated with the reduction of an interface free energy between the film and the substrate with an introduction of ultrathin underlayer.  相似文献   

6.
FePt/Ag films were deposited on thermally oxidized Si(100) substrates by magnetron sputtering at room temperature and then the as-deposited films were annealed at 500 °C. The microstructure and magnetic properties of the films have been investigated by X-ray diffraction and vibrating sample magnetometry. The results indicate that introduction of the Ag underlayer promotes an ordering transformation of the FePt phase due to thermal tensile stress between the Ag underlayer and the FePt film. The in-plane tensile stress induced by the Ag underlayer should stretch the horizontal lattice parameter of FePt; thus, it is helpful for the ordering transformation. With increasing Ag underlayer thickness, the ordering parameter and coercivity first increase and then decrease. When the Ag underlayer thickness is 12 nm, the ordering parameter and coercivity of the film reach the maximum values, respectively. The Ag underlayer thickness also affects the magnetization reversal mechanism.  相似文献   

7.
李正华  李翔 《物理学报》2014,63(16):167504-167504
具有四方结构的L10-FePt合金因其具有高磁晶各向异性和良好的化学稳定性而成为超高密度薄膜磁记录介质的最佳选择.对实验制备得到的磁性能良好的垂直取向L10-FePt合金单层膜进行了微磁学分析.在传统微磁学模型的基础上,根据晶体的对称性,引入了四角磁晶各向异性能密度的唯象表达形式;又依据薄膜生长过程中晶格对称性的破坏,考虑了薄膜面内的应力,并引入了磁弹性能.以四角磁晶各向异性能和磁弹性能为重点,对L10-FePt合金单层膜的磁滞回线进行了详细的分析,并且用微磁学方法确定了薄膜面内应力的大小.  相似文献   

8.
A method based on strain-induced phase transformation was used to lower the ordering temperature of FePt films. The strain resulted from the lattice mismatch between the FePt film and the substrate or underlayer favored the ordering. The relationships between the lattice mismatch, the ordering of FePt film, and the corresponding magnetic anisotropic constant were investigated. A critical lattice mismatch near 6.33% was believed to be most suitable for improving the chemical ordering of the FePt films. CrX (X=Ru, Mo, W, Ti) alloys with (2 0 0) texture was used to control the easy axis and ordering temperature of FePt films on glass substrate. Large uniaxial anisotropy constant Ku?1×107 erg/cm3, good magnetic squareness (∼1) and FePt(0 0 1) texture (rocking curve −5°) were obtained at the temperature Ts?250 °C when using CrRu underlayer. The diffusion from overlying layers of Ag and Cu and an inserted Ag pinning layer were effective in reducing the exchange decoupling and changing the magnetization reversal. The media noise was effectively reduced and the SNR was remarkably enhanced when a 2 nm Ag was inserted.  相似文献   

9.
L1(0) FePt is an important material for the fabrication of high density perpendicular recording media, but the ultrahigh coercivity of L1(0) FePt restricts its use. Tilting of the magnetic easy axis and the introduction of a soft magnetic underlayer can solve this problem. However, high temperature processing and the requirement of epitaxial growth conditions for obtaining an L1(0) FePt phase are the main hurdles to be overcome. Here, we introduce a bilayered magnetic structure ((111) L1(0) FePt/glassy Fe(71)Nb(4)Hf(3)Y(2)B(20)/SiO(2)/Si) in which the magnetic easy axis of L1(0) FePt is tilted by ~36° from the film plane and epitaxial growth conditions are not required. The soft magnetic underlayer not only promotes the growth of L1(0) FePt with the preferred orientation but also provides an easy cost-effective micro/nanopatterning of recording bits. A detailed magnetic characterization of the bilayered structure in which the thickness of (111) L1(0) FePt with the soft magnetic Fe(71)Nb(4)Hf(3)Y(2)B(20) glassy underlayer varied from 5 to 60 nm is carried out in an effort to understand the magnetization switching mechanism. The magnetization switching behavior is almost the same for bilayered structures in which FePt layer thickness is >10 nm (greater than the domain wall thickness of FePt). For FePt film ~10 nm thick, magnetization reversal takes place in a very narrow field range. Magnetization reversal first takes place in the soft magnetic underlayer. On further increase in the reverse magnetic field, the domain wall in the soft magnetic layer compresses at the interface of the hard and soft layers. Once the domain wall energy becomes sufficiently large to overcome the nucleation energy of the domain wall in L1(0) FePt, the magnetization of the whole bilayer is reversed. This process takes place quickly because the domain walls in the hard layer do not need to move, and the formation of a narrower domain wall may not be favorable energetically. Our results showed that the present bilayered structure is very promising for the fabrication of tilted bit-patterned magnetic recording media.  相似文献   

10.
张丽娇  蔡建旺 《物理学报》2007,56(12):7266-7273
室温下通过磁控溅射在表面热氧化的Si基片上生长了MgO/FexPt100-x双层膜和FexPt100-x单层膜系列样品,FexPt100-x的原子成分x=48—68.研究了热处理前后不同成分FePt薄膜的晶体结构和磁性的变化,尤其是MgO底层的引入对FePt的晶体结构和磁性的影响 关键词: FePt(001)薄膜 0相')" href="#">L10相  相似文献   

11.
The realization of perpendicular magnetization and perpendicular exchange bias(PEB)in magnetic multilayers is important for the spintronic applications.NiO(t)/[Ni(4 nm)/Pt(1 nm)]2multilayers with varying the NiO layer thickness t have been epitaxially deposited on SrTiO;(001)substrates.Perpendicular magnetization can be achieved when t<25 nm.Perpendicular magnetization originates from strong perpendicular magnetic anisotropy(PMA),mainly resulting from interfacial strain induced by the lattice mismatch between the Ni and Pt layers.The PMA energy constant decreases monotonically with increasing t,due to the weakening of Ni(001)orientation and a little degradation of the Ni–Pt interface.Furthermore,significant PEB can be observed though NiO layer has spin compensated(001)crystalline plane.The PEB field increases monotonically with increasing t,which is considered to result from the thickness dependent anisotropy of the NiO layer.  相似文献   

12.
缓冲层Ta对FePt薄膜L10有序相转变及矫顽力的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
制备了Ta/FePt/C系列多层膜,研究了样品在不同温度退火后的磁特性和微结构.实验结果表明,不同厚度的Ta缓冲层具有不同的微结构特征,显著影响FePt层的L10有序相的形成及相应的矫顽力.当Ta缓冲层较薄,Ta层为非晶态,且较为粗糙,由此使FePt在界面处产生较多的缺陷并导致较高密度的晶界,在退火过程中,受束缚相对较弱的非晶态的Ta原子比较容易沿FePt的缺陷和晶界处向FePt层扩散,使FePt在相变过程中产生的应力比较容易释放,同时,Ta在扩散过程中产生的缺陷,降低了FePt有序 关键词: FePt薄膜 0相')" href="#">L10相 原子扩散  相似文献   

13.
The influences of an Fe cap layer on the structural and magnetic properties of FePt/Fe bi-layers are investigated. Compared with single FePt alloy films, a thin Fe layer can affect the crystalline orientation and improve the chemical ordering of L10 FePt films. Moreover, the coercivity increases when a thin Fe layer covers the FePt layer.Beyond a critical thickness, however, the Fe cover layer quickens the magnetization reversal of Fe49Pt51/Fe bi-layers by their exchange coupling.  相似文献   

14.
李丹  李国庆 《物理学报》2018,67(15):157501-157501
用MgO和SiO_2两种氧化物将FePt薄膜与Si(100)基片隔离,分析隔离层在FePt层发生A1→L1_0转变过程中的作用,寻找用Si母材涂敷L1_0-FePt磁性层来提高磁力显微镜针尖矫顽力的合理方案.采用磁控溅射法在400?C沉积Fe Pt薄膜,在不同温度进行2 h的真空热处理,分析晶体结构和磁性的变化.结果表明:没有隔离层,Si基片表层容易发生扩散,50 nm厚FePt薄膜的矫顽力最大只有5kOe(1 Oe=10~3/(4π)A·m~(-1));而插入隔离层,矫顽力可以超过10 kOe;MgO在Si基片上容易碎裂,热处理温度不能高于600?C,用作隔离层,FePt的最大矫顽力为12.4 kOe;SiO_2与Si基片的晶格匹配更好,热膨胀系数差较小,能承受的最高热处理温度可以超过800?C,使得Fe Pt的矫顽力可以在5 kOe到15 kOe范围内调控,更适合用于制作矫顽力高并可控的磁力显微镜针尖.  相似文献   

15.
FePt films were deposited on Cr1-xMox underlayers by dc magnetron sputtering. The effects of the Mo content in the underlayers, underlayer thickness, substrate temperature, and FePt film thickness on the structural and magnetic properties of the FePt films were studied. Experimental results showed that the (200) textured Cr90Mo10 film was a promising underlayer for promoting the growth of the L10 FePt films with (001) preferred orientation at relatively low temperatures. With the Cr90Mo10 underlayers, the ordering process of the FePt films could start at 200 °C. Both the ordering degree and the out-of-plane coercivity (Hc) of the FePt films increased with an increase in substrate temperature. When the substrate temperature was ≥250 °C, the FePt films grown on the Cr90Mo10 underlayers could have the (001) preferred orientation. The FePt films grown on the Cr90Mo10 underlayers at different temperatures showed a continuous microstructure. The out-of-plane coercivities Hc decreased while the ordering degree increased with increased FePt film thickness, which could be due to the variation of the magnetic reversal mechanism from rotation predominant mode to domain wall motion predominant mode. PACS 68.55.Jk; 75.50.Ss  相似文献   

16.
Epitaxial thin films of the conductive ferromagnetic oxide SrRuO3 were grown on an (0 0 1) SrTiO3 (STO) substrate by using DC sputtering technique. The magnetic and magnetoresistive properties of the films were measured by applying the magnetic field both perpendicular (out-of-plane) and parallel (in-plane) to the film plane and ever maintaining the direction of the applied field perpendicular to that of the transport current. The films grown on an (0 0 1) STO substrate showed identical magnetization properties in two orthogonal crystallographic directions of the substrate, [1 0 0]S and [0 0 1]S (in-plane and out-of-plane geometry), which suggests the presence of a multi domain structure within the plane of the film. For such samples, no anisotropic field (hard axis) along de [0 0 1]s direction, i.e., perpendicular to the film-plane could be detected. Nevertheless, a distinguishable temperature dependent out-of-plane anisotropic magnetoresistance (MR) along with strong temperature dependent low field hysteretic MR(H) behavior was detected for the studied films. A negative MR ratio MR(T)=[ρ0H=9 T; T)−ρ( μ0H=0 T; T)]/ρ( μ0H=0 T; T) on the order of a few percent, with maximums of 6% and 4% (right at the Curie temperature, TC 160 K) was calculated for an in-plane and out-of plane measuring geometry, respectively. In addition there is an equally strong MR effect at low temperatures, which might be related to the temperature dependence of the magnetocrystalline anisotropy together with a magnetization rotation. Both the MR(T) behavior and the achieved values (except for T<30 K) are similar to those obtained on SrRuO3 films grown on 2° miscut (0 0 1) STO substrates with the current parallel to the field and parallel to the direction, which was identified as the easier axis for magnetization.  相似文献   

17.
The effect of Cr100−xTix underlayer on orderd-L10 FePt films was investigated. A low-temperature ordering of FePt films could be attained through changing the Ti content of Cr100−xTix underlayer. The ordering temperature of the 30 nm FePt film grown on 20 nm Cr90Ti10 underlayer was reduced to 250 °C which is practical manufacture process temperature. An in-plane coercivity was very high to 6000 Oe and a ratio of remnant magnetization (Mr) to saturation magnetization (Ms) was as large as 0.85. This result indicates that the coercivity obtained at 250 °C by the effect of CrTi underlayer is significantly higher than those obtained at 250-275 °C by the effect of underlayers in other conventional studies. The prominent improvement of the magnetic properties of ordered FePt thin films at low temperature of 250 °C could be understood with considering the strain-induced ordering phase transformation associated with lattice mismatch between Cr underlayer and FePt magnetic layer due to an addition of Ti content.  相似文献   

18.
FePt (20 nm) films with AgCu (20 nm) underlayer were prepared on thermally oxidized Si (0 0 1) substrates at room temperature by using dc magnetron sputtering, and the films annealed at different temperature to examine the disorder–order transformation of the FePt films. It is found that the ordered L10 FePt phase can form at low annealing temperature. Even after annealing at 300 °C, the in-plane coercivity of 5.2 kOe can be obtained in the film. With increase in annealing temperature, both the ordering degree and coercivity of the films increase. The low-temperature ordering of the films may result from the dynamic stress produced by phase separation in AgCu underlayer and Cu diffusion into FePt phase during annealing.  相似文献   

19.
[Fe(0.5 nm)/Pt(0.5 nm)]40, [Fe(1 nm)/Pt(1.5 nm)]20 and [Fe(3 nm)/Pt(3 nm)]10 multilayer were prepared by DC magnetron sputtering. By conventional furnace annealing (CA) at 270–600 °C for various time, all of the films still remained the disordered structure with the soft magnetic phase. By rapid thermal annealing (RTA) at 500 °C for various time, we obtained the [Fe(1 nm)/Pt(1.5 nm)]20 and [Fe(3 nm)/Pt(3 nm)]10 films with L12 ordered FePt3 phase which was almost ferromagnetic at room temperature. However, the [Fe(0.5 nm)/Pt(0.5 nm)]40 films was still disordered state even under RTA. Compared with CA, RTA exposed an outstanding effect on accelerating the phase transition when the film thickness is over [Fe(0.5 nm)/Pt(0.5 nm)]40.  相似文献   

20.
赵彦晓  张万荣  黄鑫  谢红云  金冬月  付强 《中国物理 B》2016,25(3):38501-038501
The effect of lateral structure parameters of transistors including emitter width, emitter length, and emitter stripe number on the performance parameters of the active inductor(AI), such as the effective inductance Ls, quality factor Q,and self-resonant frequency ω_0 is analyzed based on 0.35-μm Si Ge Bi CMOS process. The simulation results show that for AI operated under fixed current density JC, the HBT lateral structure parameters have significant effect on Ls but little influence on Q and ω_0, and the larger Ls can be realized by the narrow, short emitter stripe and few emitter stripes of Si Ge HBTs. On the other hand, for AI with fixed HBT size, smaller JCis beneficial for AI to obtain larger Ls, but with a cost of smaller Q and ω_0. In addition, under the fixed collector current IC, the larger the size of HBT is, the larger Ls becomes, but the smaller Q and ω_0 become. The obtained results provide a reference for selecting geometry of transistors and operational condition in the design of active inductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号