首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microinjection of extracellular molecules into a single animal cell was performed by an amplified femtosecond laser irradiation. When a single-shot laser pulse was focused on the plasma membrane of a single fibroblast from the mouse cell line NIH3T3 with a high-numerical aperture objective lens, a transient hole with a diameter of 1 μm was formed. The delivery process of extracellular molecules immediately after the hole formation was monitored by a fluorescence staining with fluoresceinisothiocyanate-dextran (FITC-dextran). Then the gene expression was confirmed using a DNA plasmid of an enhanced green fluorescent protein (EGFP). The gene expression was observed when the laser pulse was focused first on the cellular membrane and then on the nuclear membrane, while the gene was not expressed when the laser was focused only on the cellular membrane. On the basis of these results, the efficiency of gene delivery by the femtosecond laser microinjection and the subsequent gene expression were clarified.  相似文献   

2.
We studied the single-shot damage in magnesium fluoride irradiated by 800 nm femtosecond (fs) laser. The dependence of damage thresholds on the laser pulse durations from 60 to 750 fs was measured. The pump-probe measurements were carried out to investigate the time-resolved electronic excitation processes. A coupled dynamic model was applied to study the microprocesses in the interaction between fs laser and magnesium fluoride. The results indicate that both multiphoton ionization and avalanche ionization play important roles in the femtosecond laser-induced damage in MgF2.  相似文献   

3.
Copropagating fundamental-wavelength and second-harmonic femtosecond pulses of Cr: forsterite laser radiation are used to study cross-phase-modulation-induced instabilities and frequency shifts in a photonic-crystal fiber. Parametric instability of the second-harmonic probe pulse induced through cross-phase modulation by the fundamental-wavelength pump pulse gives rise to distinct sidebands in the spectrum of the probe field transmitted through the fiber. The wavelength of these sidebands was tuned in our experiments within approximately 100 nm by varying the peak power and the delay time of the pump pulse, suggesting a convenient way of controlled parametric spectral transformation of ultrashort laser pulses.This revised version was published online in March 2005. In the previous version, the published online date was missing  相似文献   

4.
冯璐  那日  杨体强  冯启元 《光学技术》2001,27(4):376-378
从麦克斯韦方程组出发 ,推导出了具有几个光振荡周期的飞秒激光脉冲在非线性光纤中传输的方程和非线性光纤的折射率。给出了描述具有几个光振荡周期的飞秒激光脉冲在非线性光纤中传输方程的解。研究了在非线性光纤中自相位调制导致具有几个光振荡周期的飞秒激光脉冲频谱展宽 (脉宽压缩 )的详细物理过程。研究了非线性光纤中飞秒光孤子产生的条件  相似文献   

5.
吕志国  杨直  李峰  李强龙  王屹山  杨小君 《物理学报》2018,67(18):184205-184205
高集成、高可靠性宽调谐飞秒激光源在超快光谱学、量子光学及生物成像等研究与应用领域具有重要价值.如在生物多光子显微成像中,具有适中能量的宽调谐飞秒激光源不仅可满足多种生物组织荧光激发所需的峰值功率与激发波长,而且也可以显著提升非线性荧光产生效率、成像分辨率以及增大成像穿透深度.采用自主研发的高可靠性全保偏光纤飞秒激光器作为抽运源,基于低色散光纤中高峰值功率飞秒激光脉冲非线性传输引起的光谱加宽机制,本文开展了多波长全光纤飞秒激光产生技术研究.通过采用中心波长在980, 1000,1050, 1070与1100 nm的带通滤波片选择性地对单模光纤输出光谱中最左边与最右边光谱旁瓣进行滤波,在上述中心波长处分别可获得203, 195, 196, 187与194 fs的激光输出.本文提出的基于全光纤飞秒激光脉冲在单模光纤中非线性传输引起的光谱加宽机制与特定光谱选择技术的实验方案为高集成、高可靠性宽调谐飞秒激光源的实现提供了新的研究途径.  相似文献   

6.
Temporal evolution of absorption induced by single femtosecond pulse (13Ors, 800nm) with high intensity in LiNbO3 is obtained using the probe shadow imaging technique in order to investigate light-induced electron relaxation processes. By saturating the polaron density with a high intensity laser pulse, ultra-fast decay process on picosecond time scale is observed. The decay time constant is about 141 ps and it is attributed to the direct interband electron-hole recombination process.  相似文献   

7.
M. Yan  W. Li  K. Yang  H. Zhou  H. Zeng 《Laser Physics》2011,21(3):526-530
A stretched-pulse mode-locked ytterbium-doped fiber laser was passively synchronized to a femtosecond Ti:sapphire laser at a low repetition rate of 240 kHz through large cross absorption modulation along additional 1-m-long erbium-doped fiber. The synchronous fiber laser with an ultra-long fiber cavity could produce not only nanosecond flat-top pulses with tunable pulse duration but also Gaussian-shape stretched pulses with its minimum pulse duration of ∼450 ps as confirmed by cross-correlation measurement. When operating in the stretched pulse regime, the sub-nanosecond fiber laser could be synchronously triggered by the master injection with the cavity-length mismatch tolerance up to ∼7.8 cm and timing jitter less than 400 fs, confirming that the stretched-pulse mode-locking of the ultra-long slave fiber laser could be robustly controlled by cross absorption modulation effects in the erbium-doped fiber with appropriate femtosecond master injection.  相似文献   

8.
A. M. Tikhonov 《JETP Letters》2016,103(5):309-312
Spatial profiles of single-shot microcraters produced by tightly focused femtosecond laser pulses with variable pulse energies are measured by means of a laser confocal microscope. Dependences of crater depth on laser intensity at different pulse energies appear as overlapping saturating curves with the same threshold, indicating the presence of nonlinear absorption and absence of nonlocal ablation effects. A monotonic twofold increase in absorption nonlinearity is related to the transition from minor defect-band absorption to fundamental band-to-band absorption.  相似文献   

9.
可调谐中红外飞秒光纤激光器具有非常普遍的应用,从而引起了人们的广泛关注。目前,非线性光纤中的拉曼孤子自频移效应是实现大范围可调谐飞秒脉冲激光的理想方法之一。然而,非线性光纤中其他高阶非线性效应的产生通常会限制拉曼孤子脉冲的能量提升。本文提出了利用有源掺杂光纤作为非线性介质和增益介质实现可调谐大能量中红外飞秒激光脉冲的方法。在理论上研究了有源掺杂非线性光纤中高阶孤子劈裂和孤子自频移效应的产生,以及线性增益对波长移动拉曼孤子能量、脉宽、光谱的影响。结果表明,通过为波长红移的低能量拉曼孤子提供线性增益,孤子脉冲的能量得到了显著提升且保持了其单脉冲特性,脉冲宽度为45 fs,且孤子脉冲的波长可通过所提供的增益进行大范围调谐。因此,利用有源掺杂光纤作为非线性介质是实现大能量可调谐中红外飞秒脉冲激光的一种有效方法。  相似文献   

10.
We demonstrate a novel and very simple design for an efficient high-power femtosecond Yb:KGW slab laser oscillator. The laser is capable of producing output powers of more than 5 W at 44-MHz repetition rate and pulse widths as short as 161 fs with a nearly diffraction limited beam and an optical-to-optical efficiency of more than 28%. The laser is pumped by a single broad-area laser diode and employs simple pump optics consisting of three lenses. The laser output power is distributed between two beams and single or combined outputs are discussed. In combination with a tapered fiber the laser was used to generate femtosecond supercontinua with up to 1.3-W average power and spectra spanning from 420 to over 1750 nm.  相似文献   

11.
The electron phonon relaxation time as functions of pulse width and fluence of femtosecond laser is studied based on the two-temperature model. The two-temperature model is solved using a finite difference method for copper target. The temperature distribution of the electron and the lattice along with space and time for a certain laser fluence is presented. The time-dependence of lattice and electron temperature of the surface for different pulse width and different laser fluence are also performed, respectively. Moreover, the variation of heat-affected zone per pulse with laser Auence is obtained. The satisfactory agreement between our numerical results and experimental data indicates that the electron-phonon relaxation time is reasonably accurate with the influences of pulse width and Auence of femtosecond laser.  相似文献   

12.
Thermoelastic wave induced by pulsed laser heating   总被引:6,自引:0,他引:6  
In this work, a generalized solution for the thermoelastic plane wave in a semi-infinite solid induced by pulsed laser heating is developed. The solution takes into account the non-Fourier effect in heat conduction and the coupling effect between temperature and strain rate, which play significant roles in ultrashort pulsed laser heating. Based on this solution, calculations are conducted to study stress waves induced by nano-, pico-, and femtosecond laser pulses. It is found that with the same maximum surface temperature increase, a shorter pulsed laser induces a much stronger stress wave. The non-Fourier effect causes a higher surface temperature increase, but a weaker stress wave. Also, for the first time, it is found that a second stress wave is formed and propagates with the same speed as the thermal wave. The surface displacement accompanying thermal expansion shows a substantial time delay to the femtosecond laser pulse. On the contrary, surface displacement and heating occur simultaneously in nano- and picosecond laser heating. In femtosecond laser heating, results show that the coupling effect strongly attenuates the stress wave and extends the duration of the stress wave. This may explain the minimal damage in ultrashort laser materials processing. Received: 23 May 2000 / Accepted: 26 May 2000 / Published online: 20 September 2000  相似文献   

13.
Optical UV absorption of single human living cells ranging from 200 nm to 360 nm was measured in situ for the study of cell manipulation using the near-infrared (NIR) femtosecond laser. Human breast living cells of MCF-10A, MCF-7, and MDA-MB-231 were used in this experiment. The selective photo-disruptions of single living cell and its sub-organelle (nucleus) were also demonstrated using the tightly focused 790 nm wavelength femtosecond laser with pulse duration of 110 fs. It was found that each living cell has its own absorption spectrum in UV wavelength ranges. It was also inferred that intrinsic absorption spectrum is attributed to the amount of DNA and protein of living cell. For the study of photo-disruption of single cell using the multi-photon absorption excited by the NIR femtosecond laser pulse, the origin UV absorption spectrum of targeted living cell is important and fundamental information to understand nonlinear interaction between NIR ultrashort, high-intensity laser light and transparent living cell.  相似文献   

14.
The photo-bleaching of single living cells excited by femtosecond laser irradiation was observed in situ to study the nonlinear interaction between ultrafast laser pulses and living human breast MDA-MB-231 cells. We conducted a systematic study of the energy dependence of plasma-mediated photo-disruption of fluorescently labeled subcellular structures in the nucleus of living cells using near-infrared (NIR) femtosecond laser pulses through a numerical aperture objective lens (0.75 NA). The behavior of photo-bleached living cells with fluorescently labeled nuclei was observed for 18 h after femtosecond laser irradiation under a fluorescence microscope. The photo-bleaching of single living cells without cell disruption occurred at between 470 and 630 nJ. To study the photo-disruption of subcellular organelles in single living cells using the nonlinear absorption excited by a NIR femtosecond laser pulse, the process of photo-bleaching without photo-disruption provides key information for clarifying the nonlinear interaction between NIR ultrashort, high-intensity laser light and transparent fluorescently labeled living cells.  相似文献   

15.
A femtosecond laser based on an Yb:KYW crystal with direct longitudinal pumping by a high-power semiconductor injection laser with a fiber output is described. Femtosecond pulses were generated in the self-longitudinal-mode-locking operating condition due to the use of a semiconductor saturable absorber. The average power of the oscillator was as high as 3.5 W at a central wavelength of 1035 nm, the pulse length and pulse repetition rate being 200 fs and 85.5 MHz, respectively. The product of the pulse length and the radiation spectrum width was 1.3 times higher than the theoretical limit for the pulse shape described by the function sech2. The designed master oscillator can be also used as a stand-alone source of femtosecond radiation pulses for material microprocessing and primary source for femtosecond laser amplification systems.  相似文献   

16.
王向林  侯洵  魏志义 《光子学报》2014,38(11):2738-2741
通过将1 kHz重复频率的飞秒放大激光脉冲耦合到大芯径(100 μm)阶跃光纤,在27 mm长的光纤中产生了环形空间光强分布,并在3 160 mm的长光纤中观察到平台型的空间光强分布,通过自聚焦效应对该现象进行了解释.结果表明,通过选择合适的光纤,可以实现对放大飞秒激光脉冲的有效空间整形,从而达到改善光束质量的效果.  相似文献   

17.
An all-fiber supercontinuum generator with a record-high pulse energy of 40 μJ is presented. The generator is based on a nanosecond ultralong high-energy mode-locked Yb-doped fiber laser with an additional amplification stage. The supercontinuum spectrum belongs to the wavelength range 500–1750 nm, and a relatively uniform spectral distribution of the intensity is observed in the interval 1125–1550 nm. The mean power of the supercontinuum is greater than 1.5 W. The simulation of such a generator yields the integrity of the supercontinuum pulse on the nanosecond time scale and shows that the pulse can be characterized by a certain energy in contrast to the multipulse complicated trains of supercontinuum corresponding to the femtosecond and picosecond pumping.  相似文献   

18.
为验证光学加工碳纤维材料的可行性,利用飞秒激光和连续激光对碳纤维块体材料进行了加工。获得了利用飞秒和连续激光加工的表面形貌。与连续激光加工相比,利用脉宽40fs的激光加工效率较高,加工区边缘形貌较好,加工质量较高。通过不同激光功率下加工孔径尺寸的研究获得了飞秒激光加工阈值在1012W/cm2量级。研究结果证明了光学加工碳纤维体材料的可行性。  相似文献   

19.
An all-wet femtosecond laser microprocessing technique was utilized for patterning and cutting functional network of living neuronal cells on a multi-electrode dish (MED). The neuronal cells cultured on a source substrate were transferred onto an electrode in a MED probe in solution by utilizing a femtosecond laser-induced impulsive force and a pattern of neuronal cells were formed on the MED probe. The cellular activity of the detached neurons was supported that neurites could be regenerated around the electrodes. As another processing method, the neurons stretching between electrodes were selectively cut by the direct femtosecond laser irradiation and the spontaneous electrical activity of the neuronal network was evaluated. While the spontaneous action potentials of neurons were synchronized before the cutting, the synchronization disappeared after the cutting, indicating that the neuronal network is locally disconnected by the laser cutting. The present method is applicable to artificial reconstruction of living neuronal network.  相似文献   

20.
对密度为90 mg/cm3的PMP泡沫材料的飞秒激光烧蚀结果进行了分析,推导出该材料在脉宽50 fs、波长800 nm、重复频率为1000 Hz的飞秒激光作用下的蚀除阈值为0.91 J/cm2(100个激光脉冲),获得了烧蚀直径分别随激光功率、脉冲数及聚焦物镜数值孔径的变化规律。相同飞秒激光加工系统下,对比了铜箔上获得的烧蚀形状,确定了PMP泡沫材料本身的多孔洞及其分布不均匀是造成烧蚀区域的形状不规则的重要因素。PMP泡沫在较高能量或是较长时间的飞秒激光作用下,烧蚀区域发生碳化的原因是由热作用引发的。提出了一种基于激光束耦合的飞秒激光切割厚度大于1 mm的薄膜-泡沫材料的方法,并获得了切割厚度大于1.5 mm、切割侧壁与光束光轴夹角小于5、切割面整洁的薄片。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号