首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
We develop a full quantum theory of transient-state electromagnetically induced transparency (EIT) in the vapor of three-level A-type atoms interacting with probe and coupling lasers. As applications of the full quantum theory, we show that transient-state EIT medium exhibits normal dispersion and find that group velocities of both coupling and probe lasers are greatly reduced. It is shown that the group velocity of the probe laser in the transient-state EIT case is equal to that in the adiabatic EIT case and that the coupling laser group velocity in the transient-state EIT is generally less than that in the adiabatic EIT.  相似文献   

2.
Polarization dependence of the coupling of excitation light to surface plasmon polaritons(SPPs) was investigated in a Ag nanoparticle–nanowire waveguide system(a Ag nanoparticle attached to a Ag nanowire). It was found that under the illumination of excitation light on the nanoparticle–nanowire junction, the coupling efficiency of light to SPPs depends on the polarization of the excitation light. Theoretical simulations revealed that it is the local near-field coupling between the nanoparticle and the nanowire that enhances the incident light to excite the nanowire SPPs. Because the shapes of the Ag nanoparticles differ, the local field intensity, and thus the excitement of the nanowire SPPs, vary with the polarization of the excitation light.  相似文献   

3.
The plasmonic nanocavity is an excellent platform for the study of light matter interaction within a sub-diffraction volume under ambient conditions.We design a structure of plasmonic tweezers,which can trap molecular Jaggregates and also serve as a plasmonic cavity with which to investigate strong light matter interaction.The optical response of the cavity is calculated via finite-difference time-domain methods,and the optical force is evaluated based on the Maxwell stress tensor method.With the help of the coupled oscillator model and virtual exciton theory,we investigate the strong coupling progress at the lower level of excitons,finding that a Rabi splitting of 230 meV can be obtained in a single exciton system.We further analyze the relationship between optical force and model volume in the coupling system.The proposed method offers a way to locate molecular J-aggregates in plasmonic tweezers for investigating optical force performance and strong light matter interaction.  相似文献   

4.
Enhancing light–matter interaction in cavity quantum electrodynamics has aroused widespread interests in on-chip quantum information processing. Here, we propose a hybrid nanotoroid–nanowire system to enhance photon–exciton interaction. A nanoscale gap is formed by placing a dielectric nanowire close to a dielectric nanotoroid, where the coupling coefficient between photon and emitter can achieve 5.55 times of that without nanogap. Meanwhile, the cavity loss and spontaneous emission of the emitter will remain at a small value to guarantee the realization of strong coupling. The method might hold promise for the research of nanophotonics,quantum optics, and novel optical devices.  相似文献   

5.
龚志强  刘坚强 《中国物理 B》2010,19(6):67303-067303
In this paper, we investigate the optical properties of the double-layer metal films perforated with single apertures by analysing the coupling of localized surface plasmon polaritons (LSPPs). It is found that the amplitude and the wavelength of transmission peak in such a structure can be adjusted by changing the longitudinal interval D between two films and the lateral displacements d_{x} and d_{y} which are parallel and perpendicular to the polarization direction of incident light, respectively. The variation of longitudinal interval D results in the redshift of transmission peak due to the change of coupling strength of LSPPs near the single apertures. The amplitude of transmission peak decreases with the increase of d_{y} and is less than that in the case of d_{x}, which originates from the difference in coupling manner between LSPPs and the localized natures of LSPPs.  相似文献   

6.
A coupling structure of CdSe quantum dots (QDs) and a ZnCdSe quantum well (QW) is fabricated by using the molecular-beam epitaxy technique. The effect o~ temperature on the photoluminescence (PL) of the structure is studied. The results reveal that the activation energy of exciton dissociation in the coupling QDs/QW structure is much higher than that of simple CdSe QDs, which is attributed to the exciton tunnelling from the QW to QDs through a thin ZnSe barrier layer. The results also reveal that the position and width of the emission band of the QDs vary discontinuously at certain temperatures. This phenomenon is explained by the QD ionization and exciton tunnelling from the QW to the QDs. It is demonstrated that the coupling structure significantly improves the PL intensity of CdSe QDs.  相似文献   

7.
Slowing a light pulse in a degenerate two-level system is observed with a double-frequency sweeping technique. The effects of coupling beam intensity, cell temperature and frequency detunings of the coupling and probe beams in resonance, on the slowing of light propagation in such a system are investigated. It is found that group velocities depend strongly on polarization combinations. A group velocity $v_{\rm g}$=6760m/s of light pulses in caesium vapour is obtained under the optimal parameters.  相似文献   

8.
By introducing an adjustment waveguide besides the incident waveguide, zero-dispersion slow light with wide bandwidth can be realized due to anticrossing of the incident waveguide mode and the adjustment waveguide mode. The width of the adjustment waveguide (W2) and the hole radii of the coupling region (r') will change the dispersion of incident waveguide mode. Theoretical investigation reveals that zero dispersion at various low group velocity vg in incident waveguide can be achieved. In particular, proper W2 and r' can lead to the lowest vg of 0.0085c at 1550 nm with wide bandwidth of 202 GHz for zero dispersion.  相似文献   

9.
By using the non-Markovian master equation, we investigate the effect of the cavity and the environment on the quantum Fisher information(QFI) of an atom qubit system in a dissipation cavity. We obtain the formulae of QFI for two different initial states and analyze the effect of the atom–cavity coupling and the cavity–reservoir coupling on the QFI.The results show that the dynamic behavior of the QFI is obviously dependent on the initial atomic states, the atom–cavity coupling, and the cavity–reservoir coupling. The stronger the atom–cavity coupling, the quicker the QFI oscillates, and the slower the QFI decreases. In particular, the QFI will tend to be a stable value rather than zero if the atom–cavity coupling is large enough. On the other hand, the smaller the cavity–reservoir coupling, the stronger the non-Markovian effect, and the slower the QFI decays. In other words, choosing the best parameter can improve the accuracy of the parameter estimation.In addition, the physical explanation of the dynamic behavior of the QFI is given by means of the QFI flow.  相似文献   

10.
A temperature-dependent photoluminescence measurement is performed in CdSe/ZnSe quantum dots with a ZnCdSe quantum well.We deduce the temperature dependence of the exciton linewidth and peak energy of the zero-dimensional exciton in the quantum dots and two-dimensional exciton in the CdSe wetting layer.The experimental data reveal a reduction of homogeneous broadening of the exciton line in the quantum dots in comparison with that in the two-dimensional wetting layer,which indicates the decrease of exciton and optical phonon coupling in the CdSe quantum dots.  相似文献   

11.
Emission spectra of a (?)-type three-level atom in a Kerr medium   总被引:1,自引:0,他引:1  
We investigate the emission spectra of a (?)-type three-level atom interacting with a single-mode optical field in an ideal cavity filled with a Kerr medium and discuss the structure of emission spectrum when the optical field is initially in a pure number state and a coherent state, respectively. It is shown that the structure of emission spectrum depends not only on the photon number distribution, but also on the strength of incident field and the coupling of Kerr medium to the field.  相似文献   

12.
We theoretically analyze the steady state emission spectrum and transient temporal dynamics in a coupled biexciton quantum dot(QD)–cavity system. For steady state, a phonon-assisted biexciton–exciton cascade model under continuous wave(CW) excitation is presented to explain the asymmetric QD–cavity emission spectrum intensities(intensities of cavity,exciton, and biexciton emission peak) in off-resonance condition. Results demonstrate that the electron–phonon process is crucial to the asymmetry of emission spectrum intensity. Moreover the transient characteristics of the biexciton–exciton cascade system under pulse excitation show abundant nonlinear temporal dynamic behaviors, including complicated oscillations which are caused by the four-level structure of QD model. We also reveal that under off-resonance condition the cavity outputs are slightly reduced due to the electron–phonon interaction.  相似文献   

13.
We theoretically design a single-mode plasmonic ring nanocavity. Based on the plasmonic cavity, the exciton dynamics between two identical quantum dots (QD-p, QD-q) coupled to the nanocavity are investigated. It is shown that the coupling factors gi (i = p, q) between QD-i and surface plasmons are both equal to 12.53meV in our model and exeiton population swap between the two QDs can be realized. The periods and amplitudes of population oscillations can be modified by the coupling factors. Our results may have potential applications in quantum information and quantum computation on a chip.  相似文献   

14.
We theoretically investigate the entanglement properties in a hybrid system consisting of an optical cavity–array coupled to a mechanical resonator. We show that the steady state of the system presents bipartite continuous variable entanglement in an experimentally accessible parameter regime. The effects of the cavity–cavity coupling strength on the bipartite entanglements in the field–mirror subsystem and in the field–field subsystem are studied. We further find that the entanglement between the adjacent cavity and the movable mirror can be entirely transferred to the distant cavity and mirror by properly choosing the cavity detunings and the coupling strength in the two-cavity case. Surprisingly, such a remote macroscopic entanglement tends to be stable in the large coupling regime and persists for environment temperatures at above 25 K in the three-cavity case. Such optomechanical systems can be used for the realization of continuous variable quantum information interfaces and networks.  相似文献   

15.
We propose a Mbius-strip-type plasmonic cavity with a silver Mbius strip sandwiched between dielectric layers.By brief theoretical and simulation analyses, we obtain that the Q factor of the cavity remains about 40 and the mode volume is ultrasmall(less than 1 μm3) which is more compact than that of the cylindric cavity. This Mbius-strip-type plasmonic cavity supporting the propagation of surface plasmon polaritons owns some unusual properties such as more effective volume and the spatial separation. More potential applications based on this cavity remain to be explored in future nanophotonics.  相似文献   

16.
徐权  田强 《中国物理 B》2010,19(9):96301-096301
We investigate the interactions of lattice phonons with Wannier-Mott exciton, the exciton that has a large radius in two-dimensional molecular lattice, by the method of continuum limit approximation, and obtain that the self-trapping can also appear in two-dimensional molecular lattice with a harmonic and nonlinear potential. The exciton effect on molecular lattice does not distort the molecular lattice but only makes it localized and the localization can also react, again through phonon coupling, to trap the energy and prevents its dispersion.  相似文献   

17.
The structural-acoustic coupling characteristics, mechanisms, effect of structural-acoustic coupling on natural mode and natural frequencies of the system are analyzed theoretically and numerically. Formulae for the natural frequencies of the coupled system are derived. Some new conclusions are obtained. Analytical results demonstrate that the strongly coupled system indicates obvious closed-loop feedback characteristics, whereas the weakly coupled system indicates obvious feedforward characteristics, and it is because of the presence of the feedback loop that the natural characteristics and natural frequencies are changed. Cluster coupling characteristic between the structural and acoustic modes for the regular cavity and panel system is found, which determines the coupling interaction between the flexible panel and cavity. Any mode in one mode cluster only interferes the modes and the modal natural frequencies in the same cluster independently. The modal cluster coupling changes not only the natural frequencies of the system but also the modal order and structural mode shape.  相似文献   

18.
海莲  谭磊  冯金山  徐文斌  王彬 《中国物理 B》2014,23(2):24202-024202
We discuss the effects of dissipation on the behavior of single photon transport in a system of coupled cavity arrays,with the two nearest cavities nonlocally coupled to a two-level atom.The single photon transmission amplitude is solved exactly by employing the quasi-boson picture.We investigate two different situations of local and nonlocal couplings,respectively.Comparing the dissipative case with the nondissipative one reveals that the dissipation of the system increases the middle dip and lowers the peak of the single photon transmission amplitudes,broadening the line width of the transport spectrum.It should be noted that the influence of the cavity dissipation to the single photon transport spectrum is asymmetric.By comparing the nonlocal coupling with the local one,one can find that the enhancement of the middle dip of single photon transmission amplitudes is mostly caused by the atom dissipation and that the reduced peak is mainly caused by the cavity dissipation,no matter whether it is a nonlocal or local coupling case.Whereas in the nonlocal coupling case,when the coupling strength gets stronger,the cavity dissipation has a greater effect on the single photon transport spectrum and the atom dissipation affection becomes weak,so it can be ignored.  相似文献   

19.
We propose a reflection-type infrared biosensor by exploiting localized surface plasmons in graphene ribbon arrays. By enhancing the coupling between the incident light and the resonant system, an asymmetric Fabry–Perot cavity formed by the ribbons and reflective layer is employed to reshape the reflection spectra.Simulation results demonstrate that the reflection spectra can be modified to improve the figure of merit(FOM) significantly by adjusting the electron relaxation time of graphene, the length of the Fabry–Perot cavity,and the Fermi energy level. The FOM of such a biosensor can achieve a high value of up to 36/refractive index unit(36/RIU), which is ~4 times larger than that of the traditional transmission-type one. Our study offers a feasible approach to develop biosensing devices based on graphene plasmonics with high precision.  相似文献   

20.
The s-polarized surface plasmon polaritons (SPPs) at the interface between dielectric and metamaterial are studied, and the dispersion relations of SPPs are also presented. Using the prism coupling mechanism, we obtain the attenuated total reflection (ATR) spectra in the frequency regime based on the Otto configuration. It is found that the thickness of the dielectric in the configuration and the small damping of the metamaterial affect the coupling strength significantly without changing the coupling frequency. Furthermore, the optimized thickness of the dielectric decreases with a larger damping, and the coefficient F of the metamaterial also determines the coupling frequency and strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号