首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
针对马铃薯空心病的难以检测问题,提出了一种基于半透射高光谱成像技术结合支持向量机(support vector machine,SVM)的马铃薯空心病无损检测方法。选取224个马铃薯样本(合格149个,空心75个)作为研究对象,搭建了马铃薯半透射高光谱图像采集系统,采集了马铃薯样本半透射高光谱图像(390~1 040 nm),对感兴趣区域内的光谱进行平均和光谱特征分析。采用变量标准化(normalize)对原始光谱进行光谱预处理,建立了全波段的SVM判别模型,模型对测试集样本的识别准确率仅为87.5%。为了提高模型性能,采用竞争性自适应重加权算法(competitive adaptive reweighed sampling algorithm, CARS)结合连续投影算法(successive projection algorithm, SPA)对光谱全波段520个变量进行变量选择,最终确定了8个光谱特征变量(454,601,639,664,748,827,874和936 nm),所选8个光谱变量建立的SVM模型对马铃薯测试集的识别率为94.64%。分别采用人工鱼群算法(artificial fish swarm algorithm,AFSA)、遗传算法(genetic algorithm,GA)和网格搜索法(grid search algorithm)对SVM模型的惩罚参数c和核参数g进行优化。经过建模比较分析,确定AFSA为最优优化算法,最优模型参数为c=10.659 1,g=0.349 7,确定AFSA-SVM模型为马铃薯空心病的最优识别模型,该模型总体识别率达到100%。试验结果表明:基于半透射高光谱成像技术结合CARS-SPA与AFSA-SVM方法能够对马铃薯空心病进行准确的检测,也为马铃薯空心病的快速无损检测提供技术支持。  相似文献   

2.
针对马铃薯空心病的难以检测问题, 提出了一种基于半透射高光谱成像技术结合支持向量机(support vector machine, SVM)的马铃薯空心病无损检测方法。选取224个马铃薯样本(合格149个, 空心75个)作为研究对象, 搭建了马铃薯半透射高光谱图像采集系统, 采集了马铃薯样本半透射高光谱图像(390~1 040 nm), 对感兴趣区域内的光谱进行平均和光谱特征分析。采用变量标准化(normalize)对原始光谱进行光谱预处理, 建立了全波段的SVM判别模型, 模型对测试集样本的识别准确率仅为87.5%。为了提高模型性能, 采用竞争性自适应重加权算法(competitive adaptive reweighed sampling algorithm, CARS)结合连续投影算法(successive projection algorithm, SPA)对光谱全波段520个变量进行变量选择, 最终确定了8个光谱特征变量(454, 601, 639, 664, 748, 827, 874和936 nm), 所选8个光谱变量建立的SVM模型对马铃薯测试集的识别率为94.64%。分别采用人工鱼群算法(artificial fish swarm algorithm, AFSA)、遗传算法(genetic algorithm, GA)和网格搜索法(grid search algorithm)对SVM模型的惩罚参数c和核参数g进行优化。经过建模比较分析, 确定AFSA为最优优化算法, 最优模型参数为c=10.659 1, g=0.349 7, 确定AFSA-SVM模型为马铃薯空心病的最优识别模型, 该模型总体识别率达到100%。试验结果表明: 基于半透射高光谱成像技术结合CARS-SPA与AFSA-SVM方法能够对马铃薯空心病进行准确的检测, 也为马铃薯空心病的快速无损检测提供技术支持。  相似文献   

3.
针对马铃薯损伤部位随机放置会影响检测精度的问题,提出从正对相机、背对相机及侧对相机三个方向,应用透射和反射高光谱成像技术采集马铃薯图像,进行透射和反射高光谱成像的马铃薯损伤检测比较研究。对透射和反射高光谱图像进行独立成分(IC)分析和特征提取,利用所得特征对反射图像进行二次IC分析,对透射和反射光谱进行变量选择,最终分别建立基于反射图像、反射光谱、透射光谱的马铃薯损伤定性识别模型;对识别准确率高的模型做进一步优化,采用子窗口排列分析(SPA)算法对透射光谱的特征做二次选择得到3个光谱变量,并建立任意放置的马铃薯损伤识别最优模型。试验结果表明,基于反射图像、反射光谱建立的模型识别准确率较低,其中基于反射图像的马铃薯碰伤,侧对相机识别准确率最低为43.10%;基于透射光谱信息建立的模型识别准确率较高,损伤部位正对、背对相机的识别准确率均为100%,侧对相机为99.53%;马铃薯损伤识别最优模型对任意放置的损伤识别准确率为97.39%。应用透射高光谱成像技术可以检测任意放置方向下的马铃薯损伤,该研究可为马铃薯综合品质的在线检测提供技术支持。  相似文献   

4.
高光谱图像降维的判别流形学习方法   总被引:1,自引:1,他引:0  
本文提出了一种高光谱图像降维的判别流形学习方法.针对获取的大量遥感对地观测数据存在大量冗余信息的特点,引入改进的流形学习方法对高光谱遥感数据进行降维处理,以提高遥感图像自动分类的总体准确度.该方法充分利用遥感图像自动分类中训练样本的判别信息,将输入样本的类别信息加入到常规流形学习方法的框架中,从本质上提高输出的特征在低维空间中的判别力.同时,引入线性化模型以解决流形学习方法中常见的小样本问题.对高光谱遥感图像自动分类的实验表明,基于判别流形学习的高光谱遥感图像自动分类方法能够显著地提高图像分类准确度.  相似文献   

5.
基于高光谱成像和判别分析的黄瓜病害识别   总被引:3,自引:0,他引:3  
利用光谱成像技术(400~720 nm)识别黄瓜白粉病、角斑病、霜霉病、褐斑病和无病区域。构建高光谱图像采集系统进行样本图像的采集,预处理和光谱信息的提取。由于获得的原始光谱数据量很大,为了减少后续运算量,提高准确率,采用逐步判别分析和典型判别分析两种方法进行降维。逐步判别从55个波段中选择12个波段,典型判别从55个波段中提取2个典型变量。利用选择的光谱特征参数建立病害识别模型。逐步判别构建的模型对训练样本和测试样本的判别准确率分别为100%和94%,典型判别构建的模型对训练样本和测试样本的判别准确率均为100%。说明利用高光谱成像技术可以进行黄瓜病害的快速、准确识别,并为实现可见光谱范围内黄瓜病害的田间实时在线检测提供了可能。  相似文献   

6.
快速准确的识别突水类型和突水来源对煤矿安全开采具有重要意义,激光诱导荧光(LIF)技术在检测中具有快速性和灵敏性,将LIF应用于煤矿突水的检测,再结合模式识别算法,可快速识别出突水来源。目前用于识别水样光谱的算法过于依赖预先建立的水样光谱数据库,当突水水源不在该库中时,易引发误识别。无监督学习算法DBSCAN在聚类时不需样本集的标签和类别信息,能降低对未知类别的误识别,因此把DBSCAN算法用于突水的激光诱导荧光光谱识别,并将MVO用于DBSCAN的参数寻优,省去繁琐的人工参数寻优过程。实验中,从谢桥煤矿采水点获取四个水样,利用像素为2 048的USB2000+光谱仪采集水样的荧光光谱,每种水样采集30组光谱数据。首先,利用无监督学习算法自动编码器(AE)对原始光谱数据降维,以减少光谱数据中冗余信息对聚类的影响,设计的AE的结构是介于浅层和深层之间的多层网络模型,可将原始光谱数据降到2维;为使降维模型具有稀疏性,在传统的AE算法中加入一个Dropout层,由实验可知,加入Dropout层后的降维模型具有较快的收敛速度。将多元宇宙优化(MVO)算法用于DBSCAN参数寻优,在参数寻优过程中,DBSCAN对降维后的水样光谱识别率最高为97.5%,此时参数所对应的取值范围为[0.023 66 0.040 65];为验证AE对水样光谱数据降维的有效性,把归一化后的未降维的光谱数据用于DBSCAN聚类识别,DBSCAN对原始水样光谱的识别率最高为95%,比降维后的后水样光谱识别率低了2.5%,结果表明,使用AE降维光谱数据,可提高DBSCAN对不同光谱的识别率。最后,用监督学习算法K最近邻(KNN)识别降维后的水样光谱,将识别结果和无监督学习算法DBSCAN的识别结果对比,其中训练集选用三种水样,测试集使用四种水样;在测试集中,监督学习算法只能准确地识别训练集所包含的水样类别,但把训练集没有的类别全部识别错误,而DBSCAN能准确的识别出训练集中没有的水样光谱。非线性降维算法AE能实现对高维的水样光谱数据降维,把MVO-DBSCAN用于煤矿突水水源的LIF光谱识别,可有效降低因矿井水源光谱数据库建立不完备而引起的误识别。  相似文献   

7.
开展种子品种的识别研究是保证种子质量的重要手段。利用高光谱图像技术融合图像特征信息对脱绒棉种的品种进行判别分析。采集4个品种共240粒脱绒棉种样本的高光谱图像数据(400~1 000 nm),提取样本的光谱信息及长、宽、面积、圆形度、等12个形态特征。采用连续投影算法(SPA)选出11个特征波段作为输入结合偏最小二乘判别分析法(PLS-DA)、软独立模式识别法(SIMCA)、最邻近节点算法(KNN)、主成分分析结合线性判别(PCA-LDA)及二次判别(PCA-QDA)进行建模分析,得出PLS-DA建模集和预测集的总体识别率分别为93%和90%。利用图像信息进行建模分析,模型整体的识别率均不高,说明单独使用高光谱图像的形态特征进行分类效果不佳。将特征波段的光谱和形态特征信息进行融合作为输入,建立基于PLS-DA,SIMCA,KNN,PCA-LDA及PCA-QDA的信息融合模型,其精度均比基于光谱或形态信息模型高,其中PLS-DA模型识别效果最好,建模集和预测集总体识别率分别为98%和97%。表明融合高光谱图像的光谱与图像信息可以在少量波段情况下有效的提高脱绒棉种品种的分类检测精度。  相似文献   

8.
高光谱图像和叶绿素含量的水稻纹枯病早期检测识别   总被引:1,自引:0,他引:1  
基于高光谱成像技术和化学计量方法,实现了对水稻纹枯病病害的早期检测识别。以幼苗时期的水稻植株为研究对象,对其进行纹枯病病菌侵染,获得染病植株,采集358~1 021 nm波段范围的高光谱图像,三次实验共240个样本,包括染病植株120个样本和健康植株120个样本。根据高光谱图像的光谱维,对染病水稻叶片和健康水稻叶片提取感兴趣区域(ROI),利用感兴趣区域的光谱数据,对其进行Savitzky-Golay(SG)平滑、Savitzky-Golay(SG)一阶求导、Savitzky-Golay(SG)二阶求导、变量标准化(SNV)和多元散射校正(MSC)预处理,建立线性判别分析(LDA)和支持向量机(SVM)分类模型,结果表明:采用SG二阶求导预处理后的线性判别分析(LDA)模型取得了较好的性能,正确识别率在建模集达98.3%,在预测集达95%;利用载荷系数法(x-loading weights, x-LW)对原始光谱和5种预处理的光谱数据进行特征波长提取,然后根据选取的特征波长建立线性判别分析(LDA)和支持向量机(SVM)分类模型,其中采用SG二阶求导预处理后提取的12个特征波长的线性判别分析(LDA)模型取得了较好的性能,其正确识别率在建模集达97.8%,在预测集达95%,而且基于载荷系数法建立的模型性能与全波段相当,可以通过载荷系数法减少数据量对水稻纹枯病病害进行识别;根据高光谱图像的图像维,研究了基于图像主成分分析、基于概率滤波和基于二阶概率滤波的图像特征提取方法,利用提取的特征变量建立反向传播神经网络(BPNN)和支持向量机(SVM)分类模型,其中基于图像主成分分析的反向传播神经网络(BPNN)模型取得了较好的性能,建模集准确识别率达90.6%,预测集的准确识别率达83.3%;根据高光谱图像光谱维和图像维的最优模型,特将叶绿素含量作为建模的另一个特征,分别与光谱特征、图像特征组合,建立反向传播神经网络(BPNN)和线性判别分析(LDA)模型,提出基于光谱特征加叶绿素含量、图像特征加叶绿素含量和光谱、图像特征加叶绿素含量三种组合方式,其中,光谱特征和图像特征分别与叶绿素组合的方式比之前单独的光谱和图像特征建模性能都有所提升,而且三种组合方式中光谱特征加叶绿素含量的反向传播神经网络(BPNN)建模方式取得本研究所有建模方式中较优的性能,其准确识别率在建模集达100%,在预测集达96.7%。以上研究表明,基于高光谱图像和叶绿素含量对水稻纹枯病病害进行早期识别是可行的,为水稻病害的早期识别提供了一种新方法。  相似文献   

9.
苹果水心病在众多苹果主产区都有发生,现阶段没有合适的方法实现快速鉴别和分类。为了探索苹果水心鉴别新方法,采用近红外透射光谱与化学计量学方法结合非线性流形学习数据降维技术,逐个采集好果与疑似水心病果样本590~1 250 nm的近红外透射光谱,将经光谱校正后的原始光谱做多元散射校正(multivariate scattering correction, MSC)、标准正态变量变换(standard normal variate transformation, SNVT)、二阶求导(2nd derivative)、一阶求导(1st derivative)、归一化(normalization)、卷积平滑法(savitzky-golay smoothing, SG)、均值中心化(mean centering, MC)、移动平均平滑(moving average, MA)、直接差分二阶求导(direct differential second derivative, DDSD)以及直接差分一阶求导(direct differential first derivative, DDFD)等10余种光谱预处理;先对预处理后的光谱数据建立全波长模式识别模型从而找出多元散射校正是最优预处理方法,而后再分别用多维尺度分析(multidimensional scaling, MDS)、分布邻域嵌入(stochastic neighbor embedding, SNE)、对称分布邻域嵌入(symmetric stochastic neighbor embedding, SymSNE)、 t分布邻域嵌入(t-distributed stochastic neighbor embedding, t-SNE)、拉普拉斯映射(laplacian eigenmaps, LE)、等距特征映射(isomap)、地标等距映射(landmark isomap)、局部线性嵌入(locally linear embedding, LLE)、扩散映射(diffusion maps, DM)等多种流形学习方法对经多元散射校正预处理后的光谱数据做降维处理,并结合马氏距离判别(mahalanobis distance discrimination, MD)、二次判别分析(quadratic discriminant analysis, QDA)、贝叶斯判别(Bayesian discrimination, BD)、 K最近邻法(K nearest neighbor, KNN)识别其水心存在与否。结果表明,提取前12主成分,采用多元散射校正-地标等距映射-K最近邻法(MSC-landmark isomap-KNN)模型识别效果最优,校正集和预测集识别率分别为97.5%和96.3%。故,流形学习方法结合近红外透射光谱可成功、高效地实现苹果水心鉴别,为进一步研发水心鉴别设备提供新的理论指导。  相似文献   

10.
高光谱技术诊断马铃薯叶片晚疫病的研究   总被引:2,自引:0,他引:2  
鉴于晚疫病可对马铃薯造成毁灭性灾害,对受晚疫病胁迫的马铃薯叶片进行了高光谱图像特征研究。旨在探索马铃薯叶片的高光谱图象特征与晚疫病害程度的关联,以实现准确、快速、无损的晚疫病诊断。采用60片马铃薯叶片,对其中48片采用离体方式接种晚疫病菌,所剩12片作为对照,染病前后连续观测7天,得到染病和健康样本。健康和染病样本按照染病时间和染病程度不同采用374~1 018 nm波段范围的可成像高光谱仪分别采样,基于ENVI软件处理平台提取图像中感兴趣区的光谱信息,并采用移动平均平滑、导数处理、光谱变换、基线变换等预处理方法提高信噪比,建立了最小二乘支持向量机(LS-SVM)的识别模型。9个模型中,基于原始光谱(不预处理)和光谱变换预处理后的数据所建立的模型预测效果最好,识别率均达到了94.87%。表明基于高光谱成像技术可以实现晚疫病胁迫下马铃薯病害程度的有效区分。  相似文献   

11.
基于高光谱图像技术的苹果粉质化LLE-SVM分类   总被引:3,自引:0,他引:3  
苹果粉质化程度是衡量其内部品质的一个重要因素,采用了高光谱散射图像技术进行苹果粉质化的无损检测。针对高光谱散射图像数据量大的特点,提出了局部线性嵌入(local linear embedded,LLE)和支持向量机(support vector machine,SVM)相结合的用于检测苹果粉质化的新分类方法。LLE是一种通过局部线性关系的联合来揭示全局非线性结构的非线性降维方法,能有效计算高维输入数据在低维空间的嵌入流形。对降维后的高光谱数据采用SVM进行分类。将LLE-SVM分类方法与传统的SVM分类方法比较,仿真结果表明,对高光谱数据而言,用LLE-SVM得到的训练精度高于单纯使用SVM的训练精度;降维前后,分类器的测试精度变化不大,波动范围不超过5%。LLE-SVM为高光谱散射图像技术进行苹果粉质化无损检测提供了一个有效的分类方法。  相似文献   

12.
Existing manifold learning algorithms use Euclidean distance to measure the proximity of data points. However, in high-dimensional space, Minkowski metrics are no longer stable because the ratio of distance of nearest and farthest neighbors to a given query is almost unit. It will degrade the performance of manifold learning algorithms when applied to dimensionality reduction of high-dimensional data. We introduce a new distance function named shrinkage-divergence-proximity (SDP) to manifold learning, which is meaningful in any high-dimensional space. An improved locally linear embedding (LLE) algorithm named SDP-LLE is proposed in light of the theoretical result. Experiments are conducted on a hyperspectral data set and an image segmentation data set. Experimental results show that the proposed method can efficiently reduce the dimensionality while getting higher classification accuracy.  相似文献   

13.
中国是马铃薯生产和消费大国,伴随马铃薯主粮化战略推进,马铃薯对中国农业结构和消费者饮食结构的影响与日俱增。环腐病是制约马铃薯产业发展的常见病害,对种薯会造成死苗死株,对加工原料会降低加工效率和成品质量,严重可达30%~60%。传统检测马铃薯病害的主要方法是目测、机器视觉以及高光谱成像等方法,目测或机器视觉方式鉴别环腐病需要对样品进行破坏;高光谱成像技术成本高昂,存在一定的应用局限性。因环腐病会造成整薯内部品质变化,利用近红外光谱技术探测整薯内部品质变化,从而将环腐病马铃薯从健康薯中区别开来,具有可行性和实用价值。创新地尝试利用近红外光谱结合SIMCA模式方法来区分马铃薯环腐病及健康薯。研究结果表明,基于主成分分析的SIMCA模式识别能有效判别马铃薯环腐病样品,模型校正集中环腐病和健康薯的识别率、拒绝率均为100%;模型验证集中环腐病的识别率、拒绝率分别为99.00%和100%,健康薯的识别率、拒绝率分别为94.12%和100%,所建模型精度较高。利用独立的18个样品进行模型外部验证,环腐病样品识别率为87.50%,健康薯识别率为80.00%,均没有错判。表明所建SIMCA二值识别模型效果良好,可满足实际应用,但模型精度需进一步提高。马铃薯环腐病发病部位接近表皮0.5 cm左右,近红外光谱对马铃薯样品有一定的透射和漫反射。可考虑采集马铃薯接近表皮部分的果肉组织内部光谱信息,结合马铃薯环腐病的发病机理及近红外漫反射光谱的特性,利用近红外识别模型进行环腐病判别,具有一定的创新性和应用性。  相似文献   

14.
梨在储藏、包装和运输等过程中均可能发生不同程度的机械损伤,若不及时剔除损伤梨,损伤可能会逐渐严重而演变成腐烂,造成严重的经济损失。为建立一种梨早期损伤检测及损伤时间评估的快速、无损检测方法,采用高光谱图像结合迁移学习模型对损伤早期水晶梨进行识别。以无损伤、挤压损伤24 h和挤压损伤48 h的水晶梨为研究对象,应用高光谱成像系统采集样品的高光谱图像,共获取无损伤、挤压损伤24 h和挤压损伤48 h的水晶梨高光谱图像各80帧。对高光谱图像进行主成分分析,选择主成分图像4,5,6(PC4,PC5,PC6)作为检测水晶梨损伤的特征图像,将3个主成分图像拼接后进行数据扩充共得到无损伤、挤压损伤24 h和挤压损伤48 h的特征图像各160帧。按照9∶1比例划分样本训练集和测试集后,分别建立了支持向量机(SVM)、k-近邻(k-NN)和基于ResNet50网络的迁移学习损伤识别模型。SVM、k-NN和基于ResNet50网络的迁移学习模型对测试集样本总体识别准确率分别为83.33%,85.42%和93.75%,基于ResNet50网络的迁移学习模型识别效果最佳,其对测试集中无损伤、挤压损伤24 h和挤压损伤48 h的样本正确识别率分别达到100%,83%和95%。该研究结果表明,高光谱图像技术结合基于ResNet50网络的迁移学习模型可实现水晶梨早期损伤检测,并对损伤时间有较好的预测效果,且损伤时间越长,识别准确率越高。  相似文献   

15.
高光谱成像的猕猴桃糖度无损检测方法   总被引:1,自引:0,他引:1  
猕猴桃糖度是重要的猕猴桃内部品质衡量指标。传统的糖度检测耗时且有损样品,有效无损检测猕猴桃糖度含量对于其品质分级、储藏销售具有重大意义。基于高光谱成像技术的常见果蔬品质无损检测方法多数是采用竞争性自适应重加权算法(CARS)、连续投影算法(SPA)、主成分分析(PCA)、迭代保留信息变量法(IRIV)等算法中的某个单一算法提取特征光谱变量,而这些算法单独使用易导致预测结果的稳定性不足。对此,开展了基于高光谱成像技术的猕猴桃糖度的无损检测方法研究。以四川省雅安市“红阳”猕猴桃为研究对象,依次对猕猴桃样本编号并采集其在400~1 000 nm波长范围内的高光谱图像,计算感兴趣区域的平均光谱作为样本的有效光谱信息;分别采用多元散射校正(MSC)、标准正态变量变换(SNV)、直接正交信号校正(DOSC)等3种光谱数据预处理方法分析对预测模型精度的影响,对比结果显示DOSC的预处理效果最好;对预处理后的光谱分别采用一次降维(CARS,SPA,IRIV)、一次组合降维(CARS+SPA,CARS+IRIV)算法和二次组合降维算法((CARS+SPA)-SPA,(CARS+IRIV)-SPA))等7种算法提取特征光谱变量,并分别构建了预测猕猴桃糖度的3种模型,即支持向量回归机(SVR)、最小二乘支持向量机(LSSVM)和极限学习机(ELM)模型;最后对比了基于不同特征提取方法的3种模型的预测精度。研究结果表明:ELM模型具有最好的预测性能,而SVR模型的预测性能最差;(CARS+IRIV)-SPA所选特征光谱变量输入LSSVM、ELM模型,其获得的预测结果均优于其他算法所选特征光谱变量输入对应模型所得的预测结果,证明了(CARS+IRIV)-SPA算法在提高猕猴桃糖度含量检测精度方面的有效性。对比不同方法的预测结果可知,(CARS+IRIV)-SPA-ELM对猕猴桃糖度的预测性能最优,其相关系数Rc=0.945 1,Rp=0.839 0,均方根误差RMSEC=0.450 3,RMSEP=0.598 3,预测相对分析误差RPD=2.535 1,该方法为猕猴桃糖度的检测无损化、精准化、智能化发展提供了可靠的理论依据和技术支撑。  相似文献   

16.
PLS-DA优化模型的马铃薯黑心病可见近红外透射光谱检测   总被引:1,自引:0,他引:1  
马铃薯黑心病是一种马铃薯主要内部缺陷,严重损害薯条、薯片、全粉等加工制品的质量和产率。目前对马铃薯的分级主要侧重于外部品质检测,针对内部缺陷检测的研究很少。旨在开发一种马铃薯黑心病的快速无损检测技术,为此搭建了马铃薯可见近红外透射光谱分析平台,分析健康与黑心病马铃薯的透射光谱特性并优化光谱判别模型参数。基于现有马铃薯分级线和复享PG2000高速光谱仪,采用左右透射方式(光源与光纤探头位于分级线果盘左右两侧),采集470个马铃薯(其中健康薯234个、黑心薯236个)的透射光谱图,建立偏最小二乘判别模型(PLS-DA),并利用主成分分析(PCA)与光谱形态特征相结合的方法选择特征波长,优化模型。分析发现,健康薯与黑心薯的可见近红外透射光谱在吸光度值和光谱形态特征方面均存在明显区别。黑心薯的平均光谱吸光度值高于健康薯(650~900 nm范围内),但黑心薯的平均光谱曲线较为平缓,无明显吸收峰,而健康薯平均光谱曲线在665,732和839 nm附近有明显吸收峰,并且健康薯与黑心薯的平均光谱差值在705 nm处达到最大值。基于PLS-DA法建立了马铃薯黑心病判别模型,对黑心病的判别效果显著,分类器特性曲线(ROC)下面积(AUC)值为0.994 2,黑心薯识别总正确率能够达到97.16%,RMSECV和RMSEP分别为0.28和0.26。此外,成功利用PCA与光谱形态特征相结合的方法对模型进行简化,最终得到由6个波长(658,705,716,800,816和839 nm)组成的特征波长组合,简化后的模型总正确率能够达到96.73%,接近全波段模型判别水平。研究表明,左右透射的方式能够准确识别黑心马铃薯,实现对马铃薯内部缺陷的快速无损检测。对我国马铃薯产业的发展起到一定的促进作用,为马铃薯内部缺陷在线检测技术的提高提供了重要的理论基础和实践依据。  相似文献   

17.
高光谱图像具有波段连续、维数高、数据量大、相邻波段相关性强的特点,可为地物分类提供更为丰富的细节信息。但是,数据中存在大量冗余信息与噪声,在图像分类中如直接利用其所有波段特征而不进行有效分析与选择,将会导致较低的计算效率和较高的计算复杂度,分类精度亦可能随着波段维数增加而出现先增后减的“休斯(Hughes)现象”。为快速地从高达数十个甚至数百个波段的高光谱图像中提取出具有较好识别能力的特征子集,从而避免“维度灾难”,将过滤式ReliefF算法和封装式特征递归消除算法(RFE)相结合,构建了ReliefF-RFE特征选择算法,可用于高光谱图像分类的特征选择。该算法根据权重阈值,利用ReliefF算法快速剔除大量无关特征,缩小并优化特征子集的范围;利用RFE算法进一步搜索最优特征子集,将缩小范围后的特征子集中与分类器关联性小、冗余的特征进行递归筛选,进而得到分类性能最佳的特征子集。采用Indian pines数据集、Salinas-A数据集与KSC数据集等3个标准数据集作为实验数据,将ReliefF-RFE算法的应用效果与ReliefF和RFE算法进行对比。结果显示,在3个数据集中,应用ReliefF-RFE算法的高光谱图像分类平均总体精度(OA)为92.94%、F-measure为92.81%,Kappa系数为91.94%;ReliefF-RFE算法的平均特征维数是ReliefF算法的37%,而平均运算时间则是RFE算法的75%。由此表明,ReliefF-RFE算法能够在保证分类精度的同时,克服过滤式ReliefF算法无法有效减小特征之间冗余以及封装式RFE算法时间复杂度较高的缺陷,具有更为均衡的综合性能,适用于高光谱图像分类的特征选择。  相似文献   

18.
基于高光谱的工夫红茶发酵品质程度判别方法   总被引:2,自引:0,他引:2  
发酵作为影响红茶品质形成的重要流程,发酵品质程度的判断主要基于人工经验,难以实现准确客观的评价。该研究主要针对于工夫红茶发酵工序,以不同发酵时序下的样品为对象,利用高光谱检测技术并结合化学计量学方法,对制备的不同发酵程度的样本进行无损检测和智能判别。首先利用高光谱成像仪(400~1 000 nm)采集工夫红茶发酵样品的高光谱数据,并根据气温、茶叶嫩度、萎凋情况、揉捻过程、发酵叶颜色及香气等现场生产信息,将6个不同发酵时序下的样本,根据发酵程度依次划分为3类(轻度发酵、适度发酵、过度发酵)。为了降低采集高光谱信息时因培养皿中发酵叶的不平整而产生的散射现象对光谱数据的影响,选取标准正态变量变换算法(standard normal variate,SNV)与多元散射校正算法(multiplicative scatter correction,MSC)对全波段光谱进行预处理,将预处理后的光谱数据进行主成分分析(principal components analysis,PCA),分别得到前3个主成分的三维载荷图,根据样本在图中的空间分布特征,因而选择效果较好的SNV预处理方法。以全波段光谱最优主成分作为模型输入量,建立邻近算法(K-nearest neighbor,KNN)、随机森林(random forests,RF)、极限学习机(extreme learning machine, ELM)判别模型,识别率分别为63.89%,94.44%和86.11%,结果表明,非线性模型(RF、ELM)识别率较高,其中RF模型性能优于ELM模型。为比较基于全波段与特征波长建立的工夫红茶发酵品质程度模型判别效果,采用连续投影算法(successive projections algorithm,SPA)提取31个特征波长进行PCA降维处理,以特征波长最优主成分作为模型输入量,构建SPA-KNN,SPA-RF和SPA-ELM判别模型,识别率分别为83.33%,91.67%和91.67%。通过SPA对变量筛选后,SPA-KNN和SPA-ELM模型性能明显提高,SPA-RF模型识别准确度略有下降。与特征波长建立的模型相比,全波段建立的RF模型性能最佳,对工夫红茶轻度发酵、适度发酵、过度发酵的判别率分别达到了100%,83.33%和83.33%。研究结果为推进红茶智能化、数字化加工的实现,提供了理论基础和科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号