首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 546 毫秒
1.
基于近地高光谱成像技术结合化学计量学方法,实现了黑豆品种的鉴别。实验以三种不同颜色豆芯的黑豆为研究对象,采用高光谱成像系统采集380~1 030 nm波段范围的高光谱图像,提取高光谱图像中的样本感兴趣区域平均光谱信息作为样本的光谱进行分析,建立黑豆品种的判别分析模型。共采集180个黑豆样本的180条平均光谱曲线。剔除明显噪声部分之后以440~943 nm范围光谱为黑豆样本的光谱,采用多元散射校正(multiplicative scatter correction,MSC)对光谱曲线进行预处理。分别以全部光谱数据、主成分分析(principal component analysis,PCA)提取的光谱特征信息、小波分析(wavelet transform,WT)提取的光谱特征信息建立了偏最小二乘判别分析法(partial least squares discriminant analysis,PLS-DA),簇类独立模式识别法(soft independent modeling of class analogy,SIMCA),最邻近节点算法(K-nearest neighbor algorithm,KNN),支持向量机(support vector machine,SVM), 极限学习机(extreme learning machine,ELM)等判别分析模型。以全谱的判别分析模型中,ELM模型效果最优;以PCA提取的光谱特征信息建立的模型中,ELM模型也取得了最优的效果;以WT提取的光谱特征信息建立的模型中,ELM模型结识别效果最好,建模集和预测集识别正确率达到100%。在所有的判别分析模型中,WT-ELM模型取得了最优的识别效果。实验结果表明以高光谱成像技术对黑豆品种进行无损鉴别是可行的,且WT用于提取光谱特征信息以及ELM模型用于判别黑豆品种能取得较好的效果。  相似文献   

2.
优质棉种是全面推广棉花精量播种技术的基础。采用近红外高光谱成像技术实现微破损棉种可视化识别,为棉种精选设备的研制奠定理论基础。以未破损和微破损两类棉种各540粒作为样本(其中405粒作为建模集,135粒棉种作为预测集),分批采集874~1 734 nm范围的样本高光谱图像,提取光谱数据并去除首尾两端明显噪声保留955~1 659 nm范围内光谱为棉种样本的光谱。首先使用Kennard-Stone(KS)算法进行样本划分,并通过平滑算法Savitsky-Golay(SG)对光谱进行预处理。采用二阶导数光谱(2nd spectra)方法、连续投影算法(SPA)和主成分载荷(PCA-loading)方法分别选取10,14和11个特征波长。基于全部光谱数据和特征波长建立偏最小二乘判别分析(PLS-DA)模型、K最邻近(KNN)模型和支持向量机(SVM)模型,SPA-PLS-DA模型取得了较好的结果,建模集和预测集的鉴别率分别为91.50%和90.33%。基于SPA-PLS-DA模型分别对未破损样本和微破损样本及其混合样本图像进行识别,取得了较好的识别结果,微破损棉种的识别率达90%以上。结果表明,结合近红外高光谱成像和图像处理技术,能够实现微破损棉种的可视化识别。  相似文献   

3.
基于高光谱图像的玉米种子特征提取与识别   总被引:8,自引:2,他引:6  
玉米种子的形态特征是玉米品种识别的重要因素之一.采用高光谱成像系统获取9个品种共432粒玉米种子的高光谱反射图像,对图像进行校正和预处理,提取每个样本在563.6~911.4nm共55个波段范围内的形状特征.分别利用单波段、多波段和全波段下的玉米种子形状特征结合偏最小二乘判别法进行模型分类.结果显示,全波段范围内训练集和测试集的平均正确识别率达到98.31%和93.98%,均优于多波段和单波段的正确识别率.研究表明,该方法能充分利用高光谱图像中可见光和近红外区域的有效特征信息,较准确地鉴别玉米品种,为玉米品种的自动识别领域提供了一种新方法.  相似文献   

4.
黄敏  朱晓  朱启兵  冯朝丽 《光子学报》2014,41(7):868-873
玉米种子的形态特征是玉米品种识别的重要因素之一.采用高光谱成像系统获取9个品种共432粒玉米种子的高光谱反射图像,对图像进行校正和预处理,提取每个样本在563.6~911.4 nm共55个波段范围内的形状特征.分别利用单波段、多波段和全波段下的玉米种子形状特征结合偏最小二乘判别法进行模型分类.结果显示,全波段范围内训练集和测试集的平均正确识别率达到98.31%和93.98%,均优于多波段和单波段的正确识别率.研究表明,该方法能充分利用高光谱图像中可见光和近红外区域的有效特征信息,较准确地鉴别玉米品种,为玉米品种的自动识别领域提供了一种新方法.  相似文献   

5.
高光谱成像技术因具有图谱合一的特点在作物品种鉴别方面具有较大潜力,但目前研究大多只提取利用了光谱信息,对图像信息没有进行有效利用。本文利用近红外高光谱成像仪采集了强筋、中筋、弱筋3个类型共计6个品种的单粒小麦种子高光谱图像,提取了长、宽、矩形度、圆形度、离心率等12个形态特征,并对图像中的胚乳和胚区域进行分割建立掩膜,提取了胚乳和胚区域的平均光谱信息。采用PLSDA和LSSVM方法建立基于图像信息的判别模型,结果表明强筋、弱筋两者二分类的识别率能达到98%以上,强筋、中筋两者二分类的识别率只能达到74.22%,说明近红外高光谱图像的形态信息能够反映品种间差异,但单独利用图像信息进行分类时准确度可能欠佳。采用SIMCA,PLSDA和LSSVM方法建立了胚乳和胚区域光谱信息的多分类模型,胚乳区域的分类效果较胚区域略好,说明籽粒不同部位的形状差异会影响分类效果。进一步融合光谱信息和图像信息,采用SIMCA,PLSDA和LSSVM方法建立融合模型,识别率较单独的图像或光谱信息模型均略有提升,PLSDA方法从原来的96.67%提升到98.89%, 表明充分挖掘高光谱图像所包含的形态特征和光谱特征可有效提高分类效果。  相似文献   

6.
采用中红外光谱分析技术对香菇产地进行识别研究,并将相关向量机(relevance vector machine,RVM)算法应用于中红外光谱判别分析之中,取得了较好的效果。通过采集香菇粉末的中红外透射光谱,去除光谱噪声明显部分,对剩下的3 581~689cm-1透射谱线采用多元散射校正(multiplicative scatter correction,MSC)进行预处理,并基于预处理谱线建立了香菇产地识别的偏最小二乘判别分析(partial least squares-discriminant analysis,PLS-DA)、簇类独立软模式分类(soft independent modeling of class analogy,SIMCA)、K最邻近算法(K-nearest neighbor algorithm,KNN)、支持向量机(support vector machine,SVM)、RVM模型等五种判别分析模型。所有模型的识别正确率均高于80%,KNN,SVM和RVM判别分析模型取得了相近的结果,建模集和预测集识别正确率高于90%。基于全谱的PLS-DA模型的加权回归系数,利用加权回归系数法选取了6个特征波数,并基于特征波数建立了PLS-DA,KNN,SVM和RVM模型。基于特征波数的PLS-DA模型的建模集和预测集识别正确率均低于80%,而KNN,SVM和RVM模型的建模集和预测集的识别效果相近,且都高于90%。基于全谱和特征波数的模型中,RVM算法表现出较好的效果,识别正确率优于90%。结果表明,基于中红外光谱技术能用于香菇产地的识别,特征波数的选择以及RVM算法可以有效的用于中红外光谱判别分析中。本文成功将中红外光谱用于香菇产地识别研究,为香菇品质以及其他农产品品质分析提供了一种新的想法,具有实际意义。  相似文献   

7.
高光谱图像包含了大量的光谱信息和图像信息,采用高光谱成像技术对牛肉品种进行识别。获取可见-近红外(400~1000 nm)光谱范围内的安格斯牛、利木赞牛、秦川牛、西门塔尔牛、荷斯坦奶牛五个品种共252个牛肉样本的高光谱图像。在ENVI软件中对高光谱图像进行阈值分割并构建掩膜图像,获取样本的感兴趣区域(ROI),并结合伪彩色图对牛肉样本的反射率指数进行可视化表达;采用Kennard-Stone(KS)法对样本集进行划分以提高模型的预测性能;对原始光谱采用卷积平滑(SG)、区域归一化(Area normalize)、基线校正(Baseline)、一阶导数(FD)、标准正态变量变换(SNV)及多元散射校正(MSC)等6种方法进行预处理;采用竞争性自适应重加权算法(CARS)提取特征波长。然后利用颜色矩对不同牛肉样本的颜色特征进行提取;对原始光谱图像进行主成分分析,结合灰度共生矩阵(GLCM)算法,提取主要纹理特征。最后结合偏最小二乘判别(PLS-DA)算法建立牛肉样本基于特征波长、颜色特征以及纹理特征的识别模型。KS法将牛肉样本划分为校正集190个,预测集62个;将未经预处理的光谱数据与经过6种不用预处理的光谱数据进行建模分析,结果发现经FD法处理后的光谱数据所建模型的识别率最高;结合CARS法对经FD法预处理后的光谱数据进行特征波长提取,共提取出22个波长;利用颜色矩和GLCM算法分别提取出每个牛肉样本的9个颜色特征、48个纹理特征。将特征波长数据与颜色、纹理特征信息进行融合建模,结果表明,基于特征光谱+纹理特征的模型识别效果最佳,其校正集与预测集识别率分别为98.42%和93.55%,均高于特征光谱数据模型识别率,说明融合纹理特征后使样本分类信息的表达更加全面;融合颜色特征后模型的校正集识别率均有所增加,但预测集识别率稍逊,颜色特征虽携带了部分有效信息,但这些信息与牛肉样本的相关性不大。因此,寻找与牛肉样本相关性更大的颜色特征是提高模型识别率的重要途径之一。该研究结果为牛肉品种的快速无损识别提供了一定的参考。  相似文献   

8.
可见/近红外高光谱成像技术对鸡蛋种类无损判别   总被引:2,自引:0,他引:2       下载免费PDF全文
利用高光谱技术对鸡蛋种类判别进行研究,为鸡蛋种类无损判别提供科学方法。本研究利用400~1 000 nm高光谱系统采集3种鸡蛋样本的高光谱图像,对原始光谱进行预处理;应用CARS、GAPLS和IRF对预处理后的光谱数据提取特征波长;分别建立基于全光谱和特征波长的KNN和PLS-DA鸡蛋判别模型。结果表明:Detrend法为最优预处理方法;利用CARS、GAPLS和IRF分别选出31、52和71个特征波长;基于IRF提取的特征波长的PLS-DA模型最优,校正集正确率97.02%,预测集正确率85.71%。表明基于高光谱成像技术采集的鸡蛋反射光谱对种类无损判别是可行的。  相似文献   

9.
采用荧光高光谱成像技术对脐橙表面不同浓度毒死蜱和多菌灵进行判别。实验通过由氙灯光源激发的高光谱成像系统(392~998.2 nm)分别采集浓度为0,0.5,1,2 mg·kg-1的毒死蜱和0,1,3,5 mg·kg-1多菌灵的高光谱图像。使用ENVI软件获取样本的感兴趣区域(ROI);对原始光谱数据采用卷积平滑(SG)、标准正态标量变换(SNV)及一阶导数(FD)方法进行预处理;采用区间变量迭代空间收缩法(iVISSA)、无信息变量消除算法(UVE)和竞争性自适应加权算法(CARS)进行一次提取特征波长,二维相关光谱(2D-COS)方法进行二次提取特征波长。最后采用主成分分析与线性判别分析相结合算法(PCA-LDA)和偏最小二乘算法(PLS-DA)建立基于两次提取特征波长脐橙表面不同浓度毒死蜱和多菌灵残留的判别模型。将原始光谱数据与经过预处理的3种光谱数据进行建模分析,结果发现毒死蜱和多菌灵的光谱数据经过SG处理后模型效果最优。对经SG预处理后的毒死蜱光谱数据和多菌灵光谱数据进行特征波长一次提取,最佳特征波长分别为iVISSA法和CARS法,分别提取出26个和30个特征波长;再采用二维相关光谱(2D-COS)算法对这26个和30个特征波长进行二次提取,分别得到10个和12个特征波长。对一次提取特征波长和二次提取特征波长后的光谱数据分别建模。结果表明,对于不同浓度的毒死蜱,基于iVISSA-2D-COS建立的PCA-LDA模型判别效果最佳,其校正集与预测集判别正确率分别为98.61%和95.83%;对于不同浓度的多菌灵,基于CARS-2D-COS建立的PCA-LDA模型判别效果最佳,其校正集与预测集判别正确率分别为97.22%和95.83%,均高于全波段光谱数据模型和一次提取特征波长模型判别正确率,说明2D-COS可以捕捉可用的荧光光谱信息。该研究采用2D-COS对一次提取最优特征波长进行二次提取后建模,研究结果为脐橙表面不同浓度农药残留的快速无损判别提供了一定的参考。  相似文献   

10.
高光谱成像技术的库尔勒梨早期损伤可视化检测研究   总被引:2,自引:0,他引:2  
利用高光谱成像技术对库尔勒梨早期损伤进行快速识别检测。以60个库尔勒梨为研究对象,采集380~1 030 nm波段范围内完好样本和损伤后1~7天样本的480幅高光谱图像。提取图像中感兴趣区域(ROI)的平均光谱信息,利用小波变换(WT)对光谱数据进行去噪平滑,将去噪后的全部样本按2∶1的比例分成建模集(320个)和预测集(160个)。利用二阶导数从全谱信息中提取出19个特征波长,分别基于全谱和提取出的特征波长对建模集和预测集进行支持向量机(SVM)建模分析。结果表明,基于全谱和特征波长的判别分析模型中,两者预测集的识别率都达到93.75%,表明提取的特征波长包含了光谱数据中的关键信息。然后,基于特征波长运用波段比运算挑选最佳波段比,根据波段比F值的分布确定光谱图像分割的最佳波长684和798 nm。对最佳波段比(684/798 nm)下的图像,利用选择性搜索(SS)对高光谱图像中样本的完好和损伤区域进行分割,从分割结果来看,1~7天损伤样本的受损区域能够被准确检测出来。研究结果表明:基于高光谱成像技术对库尔勒梨进行损伤鉴别是可行的,该研究所获得的特征波长和波段比为研发在线实时的库尔勒梨损伤检测系统提供支撑。  相似文献   

11.
可见-近红外高光谱图像技术快速鉴别激光打印墨粉   总被引:2,自引:2,他引:0       下载免费PDF全文
刘猛  申思  王楠 《发光学报》2017,38(5):662-668
为了使用快速、无损的方法区分激光打印文件使用的墨粉种类,利用高光谱成像技术结合化学计量法对6种激光打印墨粉的光谱数据进行建模和种类鉴别的研究。利用可见-近红外高光谱成像仪采集400~1 000 nm波段内的光谱数据,采用Savitzky Golay平滑、标准化、多元散射校正和标准正态变量变换4种方法分别对光谱数据进行预处理,而后分别建立随机森林(RF)、K最近邻(KNN)、支持向量机(SVM)、偏最小二乘判别分析(PLS-DA)和簇类独立软模式(SIMCA)模型,进而实现激光打印墨粉的种类鉴别。利用准确率、拒识率和误识率3个指标作为模型评价标准。实验结果显示,SVM和PLS-DA模型的效果最佳,准确率为100%,拒识率和误识率为0。基于可见-近红外高光谱成像技术可以实现激光打印墨粉的快速种类鉴别。  相似文献   

12.
为了寻求一种快速、无损检测脱绒棉种活力的方法,提出基于高光谱技术预测脱绒棉种电导率。采集了新陆早50、新陆早57、新陆早62三个品种且不同老化程度下共810粒脱绒棉种高光谱图像(400~1 000 nm),通过组合不同预处理方法,采用chauvenet检测方法剔除异常值后建立了偏最小二乘法(PLS)、逐步多元线性回归(SMLR)、主成分回归(PCR)模型。结果表明,采用变量标准化(SNV)、卷积平滑(Savitzky-Golay)、一阶微分(First derivative)和norris微分平滑组合的预处理方法,波段范围为480~530,650~980 nm下建立的PLS模型效果最佳;其中PLS模型得到新陆早50、新陆早57、新陆早62的预测集相关系数和校正集相关系数分别为0.88,0.90,0.92,0.91,0.89,0.90;预测集均方根误差(RMSEP)和校正集均方根误差(RMSEC)分别为44.3,38.4,37.8,46.5,43.5和40.8 μS·cm-1。研究结果表明,采用高光谱技术预测脱绒棉种电导率具有一定的可行性,也为其他种子的活力检测奠定了良好的基础。  相似文献   

13.
高光谱图像和叶绿素含量的水稻纹枯病早期检测识别   总被引:1,自引:0,他引:1  
基于高光谱成像技术和化学计量方法,实现了对水稻纹枯病病害的早期检测识别。以幼苗时期的水稻植株为研究对象,对其进行纹枯病病菌侵染,获得染病植株,采集358~1 021 nm波段范围的高光谱图像,三次实验共240个样本,包括染病植株120个样本和健康植株120个样本。根据高光谱图像的光谱维,对染病水稻叶片和健康水稻叶片提取感兴趣区域(ROI),利用感兴趣区域的光谱数据,对其进行Savitzky-Golay(SG)平滑、Savitzky-Golay(SG)一阶求导、Savitzky-Golay(SG)二阶求导、变量标准化(SNV)和多元散射校正(MSC)预处理,建立线性判别分析(LDA)和支持向量机(SVM)分类模型,结果表明:采用SG二阶求导预处理后的线性判别分析(LDA)模型取得了较好的性能,正确识别率在建模集达98.3%,在预测集达95%;利用载荷系数法(x-loading weights, x-LW)对原始光谱和5种预处理的光谱数据进行特征波长提取,然后根据选取的特征波长建立线性判别分析(LDA)和支持向量机(SVM)分类模型,其中采用SG二阶求导预处理后提取的12个特征波长的线性判别分析(LDA)模型取得了较好的性能,其正确识别率在建模集达97.8%,在预测集达95%,而且基于载荷系数法建立的模型性能与全波段相当,可以通过载荷系数法减少数据量对水稻纹枯病病害进行识别;根据高光谱图像的图像维,研究了基于图像主成分分析、基于概率滤波和基于二阶概率滤波的图像特征提取方法,利用提取的特征变量建立反向传播神经网络(BPNN)和支持向量机(SVM)分类模型,其中基于图像主成分分析的反向传播神经网络(BPNN)模型取得了较好的性能,建模集准确识别率达90.6%,预测集的准确识别率达83.3%;根据高光谱图像光谱维和图像维的最优模型,特将叶绿素含量作为建模的另一个特征,分别与光谱特征、图像特征组合,建立反向传播神经网络(BPNN)和线性判别分析(LDA)模型,提出基于光谱特征加叶绿素含量、图像特征加叶绿素含量和光谱、图像特征加叶绿素含量三种组合方式,其中,光谱特征和图像特征分别与叶绿素组合的方式比之前单独的光谱和图像特征建模性能都有所提升,而且三种组合方式中光谱特征加叶绿素含量的反向传播神经网络(BPNN)建模方式取得本研究所有建模方式中较优的性能,其准确识别率在建模集达100%,在预测集达96.7%。以上研究表明,基于高光谱图像和叶绿素含量对水稻纹枯病病害进行早期识别是可行的,为水稻病害的早期识别提供了一种新方法。  相似文献   

14.
水果货架期是影响水果品质的重要因素之一,快速无损检测货架期是消费者、食品加工企业日益关心的问题,为了探讨水果不同货架期的预测判别方法的可行性,以不同货架期脐橙为实验样品,运用高光谱成像技术并结合化学计量学方法对不同货架期脐橙进行了预测判别。分别采集脐橙货架期第0天、第7天、14天后的脐橙样本高光谱图像,并进行高光谱图像校正。从光谱角度,提取脐橙样本的平均光谱,每条光谱有176个波长点;从图像角度,先提取脐橙样本的RGB和HSI颜色空间中R,G,B,H,S和I特征值,得到6个分量的均值,然后提取灰度共生矩阵的能量、熵、对比度、逆差矩、相关性的5个图像纹理信息,一共11个图像特征值,并将图像特征进行归一化处理;结合光谱和图像信息,即176个原始光谱和11个图像信息一共187个特征值。利用光谱信息、图像信息、光谱和图像融合信息进行建模,分别建立偏最小二乘支持向量机(LS-SVM)和偏最小二乘判别(PLS-DA)模型。当原始176个光谱变量作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率为5.33%。当11个图像特征变量作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率较高为20%。当原始176个光谱变量和11个图像特征变量的融合特征作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率为1.33%。实验结果表明,以光谱和图像融合信息建立LS-SVM模型效果最优,提高了对不同货架期脐橙识别的正确率,可实现对不同货架期的脐橙准确有效分类识别,误判率为1.33%。利用高光谱成像技术对不同货架期脐橙进行快速判别,对消费者购买新鲜水果和水果深加工企业具有一定程度的理论指导,也为后期相关仪器研发奠定了基础。  相似文献   

15.
桉树育种和遗传分析是开展桉树世代改良及其目标性状改良等研究的前提。而常用的遗传基础研究方法专业性要求高,且费时费力。该研究旨在利用近红外光谱(NIRs)分析NIRs信息与桉树遗传信息间的关系,并探索NIRs信息用于桉树杂交种判别分析的可行性和准确性。以现有的桉树杂交种测试试验及其亲本材料为对象,用手持式近红外仪Phazir Rx(1624)采集了7个桉树杂交种及其4个亲本树种叶片的NIRs信息。每个树种选择10个单株,每个单株选10片当年生健康叶片,扫描其正面叶脉中部两侧光谱各5次,以均值代表单个叶片的NIRs信息。每种基因型总共各获得100条NIRs信息,其中70条构成训练集样本,30条构成验证集样本。原始NIRs信息采用S.G二阶导数转换预处理,以消除基线及其他因素对光谱信息的影响,增强特征峰信息。经预处理后的NIRs信息用于后续分析,首先通过主成分分析(PCA)的因子得分对树种的分类判断NIRs信息与测试树种遗传信息间的关系。在此基础上,分别用簇类独立软模式(SIMCA)和偏最小二乘判别分析(PLS-DA)两种判别模式建立桉树杂交种的NIRs判别模型。经预处理后的NIRs信息的变异系数曲线显示,在波长2 000 nm后,各树种的NIRs信息存在丰富的特征峰,且特征峰的分布范围存在较大的差异。PCA结果显示,不同的亲本间、杂交种间及杂交种与亲本间样本的PC1和PC2得分可以清晰地将各树种进行分类,这在很大程度上表明NIRs信息可以正确反映桉树不同基因型的遗传信息。NIRs模型的判别效果显示,少数遗传关系比较接近的杂交组合的SIMCA模式相互判别准确率较低,而多数杂交组合间的SIMCA判别准确率则在73%~100%之间;桉树各杂交组合间的单独和综合模型的PLS-DA判别准确率均为100%,且基于PLS-DA判别的综合模型能将7个杂交组合一一与其他组合正确区分开,判别效果明显优于SIMCA模式。结果表明:NIRs信息可以正确反映桉树不同基因型的遗传信息,NIRs判别模型可以比较准确地将各树种进行区分,因此,NIRs信息可用于桉树杂交种和纯种的田间定性判别,从而辅助桉树育种材料遗传基础的研究。  相似文献   

16.
灵武长枣作为宁夏优势特色枣果,具有重要的经济社会价值和科学研究意义。利用可见近红外(Vis/NIR)高光谱成像系统采集60颗完整长枣光谱图像,然后利用损伤装置对60颗完整长枣进行损伤实验,最终得到60颗损伤(内部瘀伤)长枣,高光谱成像系统采集损伤后五个时间段(损伤后2,4,8,12和24 h)长枣的光谱图像。对采集的长枣光谱图像用ENVI软件提取感兴趣(ROI)区域,并计算完整长枣和每个时间段长枣的平均光谱值。原始光谱利用Savitzky-Golay平滑的一阶导数(SG-1)和二阶导数(SG-2)、标准正态变换(SNV)和去趋势(Detrending)、以及SNV-SG-1、SNV-SG-2、Detrending-SG-1、Detrending-SG-2算法进行预处理,原始光谱和预处理光谱建立偏最小二乘判别分析(PLS-DA)分类模型。选择最优的预处理光谱数据,利用连续投影算法(SPA)、间隔随机蛙跳(IRF)、无信息消除变量(UVE)、变量组合集群分析法(VCPA)、区间变量迭代空间收缩法(IVISSA)和IRF-SPA、UVE-SPA、IVISSA-SPA等算法进行特征变量选择,对选择的特征变量建立PLS-DA、线性判别分析(LDA)和支持向量机(SVM)分类判别模型。结果表明,在原始光谱建立的PLS-DA模型中,模型校正集和预测集准确率分别为82.96%和90%。光谱经过预处理后得到SNV-SG-2-PLS-DA为最优分类判别模型,模型校正集和预测集准确率分别为91.11%和96.67%。在特征变量建立的分类模型中,SNV-SG-2-UVE-PLS-DA模型校正集和预测集准确率分别为86.3%和94.44%;SNV-SG-2-SPA-LDA模型校正集和预测集准确率分别为86.3%和83.33%;SNV-SG-2-UVE-SVM模型校正集和预测集准确率分别为77.78%和71.11%。对于分类模型来说线性分类模型(PLS-DA、LDA)分类结果优于非线性分类模型(SVM)分类结果,在线性分类模型结果中PLS-DA优于LDA分类结果,PLS-DA可以更好的提供分类效果。研究表明,利用高光谱结合偏最小二乘判别分析分类模型,可以有效的实现灵武长枣损伤后随时间变化的快速检测,为灵武长枣在线检测提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号