首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 256 毫秒
1.
我国马铃薯采后储运销售过程中黑心病发病率较高,内部品质也参差不齐,检测分选技术滞后,严重制约了马铃薯主食化产业发展进程。马铃薯黑心病及淀粉含量等内部品质的同时在线无损检测,对推进我国马铃薯主食化战略具有重要意义。基于可见/近红外漫透射光谱原理,利用实验室自行搭建的无损在线检测系统(检测速度约为每秒4个),以马铃薯黑心病和淀粉含量为内部品质检测指标,进行了黑心病和淀粉含量同时在线无损检测研究。先将121个健康马铃薯和116个黑心马铃薯600~1 000 nm波段范围的原始光谱分别进行了平均处理,发现600~900 nm波段内黑心马铃薯样品的吸光度数值明显高于健康马铃薯样品,而且黑心组织影响健康马铃薯在663 nm附近叶绿素的特征吸收峰和760 nm附近水的特征吸收峰,强度明显高于黑心马铃薯。基于健康马铃薯和黑心马铃薯原始光谱建立了马铃薯黑心病偏最小二乘判别模型(PLS-DA)。同时对121个健康马铃薯光谱分别采用SG卷积平滑(SG-Smoothing)、标准正态变换(SNV)、多元散射校正(MSC)、一阶导数(FD)、 SG平滑结合一阶导数(SG+FD)等不同预处理方法,并结合竞争性自适应加权重采样CARS算法筛选特征波长后,建立了淀粉含量(SC)偏最小二乘(PLS)定量预测模型。结果表明:黑心马铃薯偏最小二乘定性判别模型校正集和验证集判别正确率分别为97.74%和98.33%,总判别正确率97.89%;原始光谱经SG平滑加一阶导数预处理,再结合CARS算法筛选特征波长建的马铃薯淀粉含量偏最小二乘定量预测模型结果最优,其校正集和预测集相关系数分别为0.928和0.908,均方根误差分别为0.556%和0.633%。最后,将所建模型植入在线检测系统,利用50个未参与建模的样品进行了外部验证。马铃薯黑心病的判别正确率为96%,淀粉预测值与标准理化值相关系数为0.893,均方根误差为:0.713%。说明基于马铃薯漫透射光谱可以实现马铃薯黑心病及其他内部品质同时在线无损检测,为马铃薯采后品质检测分选以至推进马铃薯主食化产业发展提供了一定技术参考。  相似文献   

2.
苹果营养丰富、口味酸甜,是深受大众喜爱的一种水果。苹果霉心病是一种真菌侵染果实病害,隐蔽性极强,一般在近成熟期果实内部发生霉变,肉眼从外观观察难以分辨,市面上大多数品种的苹果都受其影响。霉心病病果重量变轻、口感变差,严重的甚至不能食用,对经济效益的影响巨大。采用可见近红外光谱分析技术,使用微型光谱仪在线无损检测苹果霉心病,针对4种苹果在线输送时摆放姿态(竖放柄朝上、竖放柄朝下、横放柄朝输送方向和横放柄垂直输送方向)的判别效果进行了优化分析。首先使用主成分分析对600~900 nm波段的透射光谱提取主成分后分别建立线性判别分析(LDA)、马氏距离(MD)和K近邻法(KNN)模型并对校正集和预测集的判别准确率进行对比;其次对600~900 nm波段中心化预处理后建立偏最小二乘判别分析(PLS-DA)模型并给出4种摆放姿态的判别效果;最后使用两种机器学习算法极限学习机(ELM)和支持向量机(SVM)分别建立霉心病判别模型进行预测。对比上述所有6种判别模型,通过观察4种摆放姿态整体的判别效果得到最佳的建模方法为PLS-DA,其中竖放柄朝上和竖放柄朝下摆放的判别准确率都为93.75%,其他2种摆放姿态的判别准确率也都超过85%,再根据PLS-DA模型波段变量投影重要性指标得分值分布提取特征波段690~720 nm重新建立模型,对比4种摆放姿态效果最好的是竖放柄朝上摆放,其预测集的判别准确率达到93.75%,并且对病果的判别效果最佳。研究结果表明PLS-DA可以作为判别苹果霉心病一种有效方法,竖放柄朝上摆放可以作为苹果霉心病在线检测时一种有效姿态。  相似文献   

3.
鸭梨黑心病可见/近红外漫透射光谱在线检测   总被引:1,自引:0,他引:1  
鸭梨黑心病是鸭梨的主要生理病害,直接影响鸭梨的出口创汇;准确快速鉴别鸭梨黑心病对于梨的出口业具有重要现实意义。探讨可见/近红外漫透射光谱在线检测鸭梨黑心病的可行性,选取80个正常鸭梨和70个黑心鸭梨作为建模集,建模集被分为校正集和预测集以求获得最优模型。未参与建模的30个正常梨和20个黑心梨作为预测集,用于评价模型的预测能力。鸭梨的可见/近红外漫透射光谱,在5个/秒的速度下采集。建模集能量谱经标准正交变换(SNV)和多元散射校正(MSC)处理后,分别建立健康梨和黑心梨的偏最小二乘判别模型(DPLS)、峰面积判别模型(DPA)、主成分判别模型(DPCA)。用建模集模型判别预测集鸭梨,经比较,DPLS模型的判别准确率最高,黑心梨正确识别率达到100%。实验结果表明:可见/近红外漫透射光谱结合DPLS判别方法,可以实现黑心鸭梨的在线检测。相比传统的人工破损方法,在线检测可为梨出口贸易提供技术支撑和科学参考依据。  相似文献   

4.
针对马铃薯空心病的难以检测问题,提出了一种基于半透射高光谱成像技术结合支持向量机(support vector machine,SVM)的马铃薯空心病无损检测方法。选取224个马铃薯样本(合格149个,空心75个)作为研究对象,搭建了马铃薯半透射高光谱图像采集系统,采集了马铃薯样本半透射高光谱图像(390~1 040 nm),对感兴趣区域内的光谱进行平均和光谱特征分析。采用变量标准化(normalize)对原始光谱进行光谱预处理,建立了全波段的SVM判别模型,模型对测试集样本的识别准确率仅为87.5%。为了提高模型性能,采用竞争性自适应重加权算法(competitive adaptive reweighed sampling algorithm, CARS)结合连续投影算法(successive projection algorithm, SPA)对光谱全波段520个变量进行变量选择,最终确定了8个光谱特征变量(454,601,639,664,748,827,874和936 nm),所选8个光谱变量建立的SVM模型对马铃薯测试集的识别率为94.64%。分别采用人工鱼群算法(artificial fish swarm algorithm,AFSA)、遗传算法(genetic algorithm,GA)和网格搜索法(grid search algorithm)对SVM模型的惩罚参数c和核参数g进行优化。经过建模比较分析,确定AFSA为最优优化算法,最优模型参数为c=10.659 1,g=0.349 7,确定AFSA-SVM模型为马铃薯空心病的最优识别模型,该模型总体识别率达到100%。试验结果表明:基于半透射高光谱成像技术结合CARS-SPA与AFSA-SVM方法能够对马铃薯空心病进行准确的检测,也为马铃薯空心病的快速无损检测提供技术支持。  相似文献   

5.
针对马铃薯空心病的难以检测问题, 提出了一种基于半透射高光谱成像技术结合支持向量机(support vector machine, SVM)的马铃薯空心病无损检测方法。选取224个马铃薯样本(合格149个, 空心75个)作为研究对象, 搭建了马铃薯半透射高光谱图像采集系统, 采集了马铃薯样本半透射高光谱图像(390~1 040 nm), 对感兴趣区域内的光谱进行平均和光谱特征分析。采用变量标准化(normalize)对原始光谱进行光谱预处理, 建立了全波段的SVM判别模型, 模型对测试集样本的识别准确率仅为87.5%。为了提高模型性能, 采用竞争性自适应重加权算法(competitive adaptive reweighed sampling algorithm, CARS)结合连续投影算法(successive projection algorithm, SPA)对光谱全波段520个变量进行变量选择, 最终确定了8个光谱特征变量(454, 601, 639, 664, 748, 827, 874和936 nm), 所选8个光谱变量建立的SVM模型对马铃薯测试集的识别率为94.64%。分别采用人工鱼群算法(artificial fish swarm algorithm, AFSA)、遗传算法(genetic algorithm, GA)和网格搜索法(grid search algorithm)对SVM模型的惩罚参数c和核参数g进行优化。经过建模比较分析, 确定AFSA为最优优化算法, 最优模型参数为c=10.659 1, g=0.349 7, 确定AFSA-SVM模型为马铃薯空心病的最优识别模型, 该模型总体识别率达到100%。试验结果表明: 基于半透射高光谱成像技术结合CARS-SPA与AFSA-SVM方法能够对马铃薯空心病进行准确的检测, 也为马铃薯空心病的快速无损检测提供技术支持。  相似文献   

6.
中国是马铃薯生产和消费大国,伴随马铃薯主粮化战略推进,马铃薯对中国农业结构和消费者饮食结构的影响与日俱增。环腐病是制约马铃薯产业发展的常见病害,对种薯会造成死苗死株,对加工原料会降低加工效率和成品质量,严重可达30%~60%。传统检测马铃薯病害的主要方法是目测、机器视觉以及高光谱成像等方法,目测或机器视觉方式鉴别环腐病需要对样品进行破坏;高光谱成像技术成本高昂,存在一定的应用局限性。因环腐病会造成整薯内部品质变化,利用近红外光谱技术探测整薯内部品质变化,从而将环腐病马铃薯从健康薯中区别开来,具有可行性和实用价值。创新地尝试利用近红外光谱结合SIMCA模式方法来区分马铃薯环腐病及健康薯。研究结果表明,基于主成分分析的SIMCA模式识别能有效判别马铃薯环腐病样品,模型校正集中环腐病和健康薯的识别率、拒绝率均为100%;模型验证集中环腐病的识别率、拒绝率分别为99.00%和100%,健康薯的识别率、拒绝率分别为94.12%和100%,所建模型精度较高。利用独立的18个样品进行模型外部验证,环腐病样品识别率为87.50%,健康薯识别率为80.00%,均没有错判。表明所建SIMCA二值识别模型效果良好,可满足实际应用,但模型精度需进一步提高。马铃薯环腐病发病部位接近表皮0.5 cm左右,近红外光谱对马铃薯样品有一定的透射和漫反射。可考虑采集马铃薯接近表皮部分的果肉组织内部光谱信息,结合马铃薯环腐病的发病机理及近红外漫反射光谱的特性,利用近红外识别模型进行环腐病判别,具有一定的创新性和应用性。  相似文献   

7.
可见/近红外高光谱成像技术对鸡蛋种类无损判别   总被引:2,自引:0,他引:2       下载免费PDF全文
利用高光谱技术对鸡蛋种类判别进行研究,为鸡蛋种类无损判别提供科学方法。本研究利用400~1 000 nm高光谱系统采集3种鸡蛋样本的高光谱图像,对原始光谱进行预处理;应用CARS、GAPLS和IRF对预处理后的光谱数据提取特征波长;分别建立基于全光谱和特征波长的KNN和PLS-DA鸡蛋判别模型。结果表明:Detrend法为最优预处理方法;利用CARS、GAPLS和IRF分别选出31、52和71个特征波长;基于IRF提取的特征波长的PLS-DA模型最优,校正集正确率97.02%,预测集正确率85.71%。表明基于高光谱成像技术采集的鸡蛋反射光谱对种类无损判别是可行的。  相似文献   

8.
可见近红外高光谱成像对灵武长枣定量损伤等级判别   总被引:1,自引:0,他引:1  
利用可见近红外(Vis-NIR)高光谱成像技术对完好和损伤等级灵武长枣进行快速识别检测。采用定量损伤装置得到损伤Ⅰ,Ⅱ,Ⅲ,Ⅳ和Ⅴ级的灵武长枣,借助高光谱成像系统采集完好长枣和损伤长枣样本高光谱图像。提取感兴趣区域(region of interest,ROI)并计算样本平均光谱值。利用光谱-理化值共生距离算法(SPXY)将420个长枣样本按3∶1的比例划分校正集315个和预测集105个。灵武长枣原始光谱建立偏最小二乘判别分析(PLS-DA)分类模型,得到校正集和预测集准确率分别为72.70%和86.67%;灵武长枣原始光谱数据采用移动平均(MA)、卷积平滑(SG)、多元散射校正(MSC)、正交信号修正(OSC)、基线校准(baseline)和去趋势(de-trending)等方法进行光谱预处理并建立PLS-DA分类判别模型。通过分析比较,得到MSC-PLS-DA为最优分类判别模型,校正集准确率为76.19%,预测集准确率为86.67%,其中校正集比原始光谱建模准确率提高了3.49%,预测集准确率较原始光谱建模结果未提高;为了提高建模效果,对灵武长枣原始光谱和预处理后的光谱分别采用连续投影算法(SPA)、无信息变量消除(UVE)、竞争性自适应加权抽样(CARS)和区间变量迭代空间收缩法(iVISSA)等算法提取特征波长,建立PLS-DA分类判别模型,结果表明,MSC-CARS-PLS-DA为最优模型组合,校正集准确率为77.14%,预测集准确率为89.52%,建模准确率较原始光谱建模准确率分别提高了4.44%和2.85%。结果表明,Vis-NIR高光谱成像技术结合MSC-CARS-PLS-DA模型可实现灵武长枣损伤等级的快速识别。  相似文献   

9.
开展了低温冷冻和机械损伤条件下马铃薯高光谱图像特征响应特性研究。采用卓立汉光公司Image~λ“谱像”系列高光谱相机获取完好的、低温冷冻和机械损伤条件下的光谱波段范围为387~1 035 nm的马铃薯高光谱图像;截取校正后的像素尺寸大小为60×60的马铃薯高光谱中部完好的图像并计算该区域平均反射率值;冻伤的马铃薯样本的反射光谱曲线在440,560和680 nm附近有明显吸收峰;机械损伤样本在560和680 nm附近有明显吸收峰,在680 nm附近吸收峰谷值明显低于冻伤样本;完好的马铃薯样本反射光谱曲线相对较为平滑,在560和680 nm附近未见明显吸收峰;撞伤样本在440,560和680 nm附近存在吸收峰,而在410 nm附近有一个明显的反射峰。四类马铃薯样本的反射光谱曲线特征峰值表现出一定的指纹特性,因而可以被用于后续品质特征检测分析使用。由于仪器或检测环境、光照强弱等因素影响,光谱数据中掺杂噪声,因此采用化学计量学预处理方法消除噪声的影响;随机选取70%的马铃薯四类样本的反射光谱作为训练数据,剩余的30%作为测试集;接着,利用极端梯度提升算法、类型提升算法和轻量梯度提升机算法来获取马铃薯高光谱图像的有效特征波谱,减少高维海量高光谱数据对后续品质分类模型的影响;最后,将提取到的有效特征波长构建马铃薯品质判别模型。在建立的分类模型中,使用的轻量梯度提升机+逻辑斯蒂回归达到最高的判别精度98.86%。该研究为将来高光谱图像成像技术在现代农业生产加工过程中马铃薯品质有效监测与控制提供理论基础和技术支撑。  相似文献   

10.
为了对鸡种蛋胚胎进行雌雄识别,探究利用紫外-可见-近红外透射光谱进行鸡胚雌雄识别的可行性,搭建了鸡种蛋透射光谱检测系统,采用横向和竖向大头朝上2种放置方式获取210枚鸡种蛋孵化0~15 d的光谱,光谱范围为360~1 000 nm。构建极限学习机(ELM)鸡胚雌雄识别模型,通过比较不同放置方式和孵化天数下模型的识别准确率,发现竖向放置且孵化第7 d的识别效果最好;将竖向放置孵化第7 d的光谱初步分为紫外(360~380 nm)、可见光(380~780 nm)、近红外(780~1 000 nm)、紫外-可见光(360~780 nm)和全波段(360~1 000 nm)5个不同的波段范围来分析,预测集准确率分别为82.86%,77.14%,75.71%,84.29%和81.43%,筛选出360~780 nm的紫外-可见光波段为有效波段;在紫外-可见光(360~780 nm)波段,采用多元散射校正(MSC)去噪,并用竞争性自适应重加权采样算法(CARS)和连续投影算法(SPA)筛选特征波长降维,建立不经筛选特征波长、CARS筛选特征波长和SPA筛选特征波长的3种ELM模型。其中不经筛选特征波长的ELM模型识别效果最好,但输入变量最多,隐含层神经元为680且激活函数为sig时,预测集准确率为84.29%。SPA筛选特征波长的ELM模型识别效果次之,输入变量有9个,隐含层神经元为840且激活函数为hardlim时,预测集准确率为81.43%。CARS筛选特征波长的ELM模型识别效果最差,输入变量有27个,隐含层神经元为100且激活函数为sig时,预测集准确率为78.57%;用遗传算法(GA)优化ELM模型的权值变量和隐含层阈值,不经筛选特征波长建立的GA-ELM模型,预测集准确率为87.14%,SPA筛选特征波长建立的GA-ELM模型,预测集准确率为87.14%,CARS筛选特征波长建立的GA-ELM模型,预测集准确率为81.43%。紫外-可见光波段不经筛选特征波长的GA-ELM模型识别效果和经SPA筛选特征波长的GA-ELM模型相同,表明SPA筛选的特征波长变量能够有效反映360~780 nm波段的信息,SPA使用的变量数仅占紫外-可见光波段的2.14%,因此,雌雄识别最佳模型为紫外-可见光波段经SPA筛选特征波长的GA-ELM模型,预测集准确率为87.14%,其中,雌性识别率为88.57%,雄性识别率为85.71%,单个样本平均判别时间0.080 ms。结果表明紫外-可见透射光谱技术和ELM模型为孵化早期鸡胚蛋雌雄识别提供了一种可行方法。  相似文献   

11.
马铃薯多品质参数可见/近红外光谱无损快速检测   总被引:1,自引:0,他引:1  
马铃薯是与小麦、稻米、玉米协调发展的第四大主粮作物,现阶段我国正积极推进马铃薯主食开发,但马铃薯品质的参差不齐严重制约了马铃薯产业主食化进程,马铃薯品质快速无损检测对其加工产业化进程有着重要意义。国内外学者基于可见/近红外光谱对马铃薯内部品质检测进行了不少相关研究,但迄今为止大部分研究都基于可见/近红外漫反射原理,马铃薯粗糙的表皮对样品漫反射光谱影响较大。近红外透射光谱能较好的反映样品的品质信息,但马铃薯样品全透射光谱因样品大小不同,导致光谱受光程差异的影响较大。考虑到马铃薯样品整体质地较为均匀,根据马铃薯的形状特性搭建了马铃薯局部透射光谱采集系统,局部透射检测方式既能避免马铃薯表皮的影响,又能在保证光程统一的情况下获得样品内部的信息。该光谱采集系统由光谱采集单元(光谱仪、耦合透镜)与光源单元(卤素灯、灯杯)构成。进行光谱采集时,将二者贴紧马铃薯表面以确保光谱采集单元不会接收到来自马铃薯表面的反射光。用该系统采集了120个马铃薯650~1 100 nm范围的局部透射光谱,分别进行去趋势(detrend)、多元散射校正(muliplication scattering correction, MSC)、标准正态变量变换(standard normal variable transformation, SNV)和一阶导数(first Derivative, FD)预处理,并建立了马铃薯干物质、淀粉、还原糖含量的偏最小二乘预测模型(partial least squares regression,PLSR)。结果显示,采用多元散射校正预处理的干物质和淀粉含量预测模型效果较好,其验证集决定系数分别为0.854 0和0.851 0,验证集均方根误差分别为0.521 9%和0.484 8%;采用一阶导数预处理的还原糖预测模型效果最好,其验证集决定系数为0.768 6,均方根误差为0.025 1%。为进一步优化模型采用竞争性自适应重加权采样(competitive adaptive reweighted sampling, CARS)等三种方法进行特征波长的筛选,并建立了偏最小二乘预测模型。结果显示,马铃薯各品质参数的预测效果均得到了较大提升,CARS筛选波长后的干物质、淀粉、还原糖预测模型的验证集决定系数分别为0.877 6, 0.865 3和0.887 7,验证集均方根误差分别为0.449 2%, 0.930 2%和0.016 7%。采用CARS特征波长提取能够简化模型,去除无关变量和共线性变量,从而提高模型的精度和稳定性,尤其是对低含量组分还原糖的预测模型效果显著。最后,为验证马铃薯各品质参数预测模型的精度及稳定性,选取30个不同批次马铃薯样品对所建预测模型进行了外部验证。马铃薯干物质、淀粉、还原糖含量的模型预测值与标准理化值决定系数分别为0.849 9, 0.867 1, 0.877 6,均方根误差分别为0.660 9, 0.480 9, 0.016 9,平均相对误差分别为2.03%, 1.77%, 7.58%。研究表明,局部透射光谱携带了马铃薯的内部信息,与干物质、淀粉、还原糖含量有显著相关性。该可见/近红外局部透射检测系统可以实现马铃薯多品质参数的快速无损预测,特别是干物质含量及淀粉含量的预测效果较好,但是对个别还原糖含量非常低的样品出现预测相对误差较大现象,下一步研究中需要进一步优化完善。  相似文献   

12.
高光谱技术诊断马铃薯叶片晚疫病的研究   总被引:2,自引:0,他引:2  
鉴于晚疫病可对马铃薯造成毁灭性灾害,对受晚疫病胁迫的马铃薯叶片进行了高光谱图像特征研究。旨在探索马铃薯叶片的高光谱图象特征与晚疫病害程度的关联,以实现准确、快速、无损的晚疫病诊断。采用60片马铃薯叶片,对其中48片采用离体方式接种晚疫病菌,所剩12片作为对照,染病前后连续观测7天,得到染病和健康样本。健康和染病样本按照染病时间和染病程度不同采用374~1 018 nm波段范围的可成像高光谱仪分别采样,基于ENVI软件处理平台提取图像中感兴趣区的光谱信息,并采用移动平均平滑、导数处理、光谱变换、基线变换等预处理方法提高信噪比,建立了最小二乘支持向量机(LS-SVM)的识别模型。9个模型中,基于原始光谱(不预处理)和光谱变换预处理后的数据所建立的模型预测效果最好,识别率均达到了94.87%。表明基于高光谱成像技术可以实现晚疫病胁迫下马铃薯病害程度的有效区分。  相似文献   

13.
针对马铃薯内外部缺陷多项指标难以同时识别的问题,提出了一种半透射高光谱成像技术采用流形学习降维算法与最小二乘支持向量机(LSSVM)相结合的方法,该方法可同时识别马铃薯内外部缺陷的多项指标。试验以315个马铃薯样本为研究对象,分别采集合格、外部缺陷(发芽和绿皮)和内部缺陷(空心)马铃薯样本的半透射高光谱图像,同时为了符合生产实际,将外部缺陷马铃薯的缺陷部位以正对、侧对和背对采集探头的随机放置方式进行高光谱图像采集。提取马铃薯样本高光谱图像的平均光谱(390~1 040 nm)进行光谱预处理,然后分别采用有监督局部线性嵌入(SLLE)、局部线性嵌入(LLE)和等距映射(Isomap)三种流形学习算法对预处理光谱进行降维,并分别建立基于纠错输出编码的最小二乘支持向量机(ECOC-LSSVM)多分类模型。通过分析和比较建模结果,确定SLLE为最优降维算法,SLLE-LSSVM为最优马铃薯内外部缺陷识别模型,该方法对测试集合格、发芽、绿皮和空心马铃薯样本的识别率分别达到96.83%,86.96%,86.96%和95%,混合识别率达到93.02%。试验结果表明:基于半透射高光谱成像技术结合SLLE-LSSVM的定性分析方法能够同时识别马铃薯内外部缺陷的多项指标,为马铃薯内外部缺陷的快速在线无损检测提供了技术参考。  相似文献   

14.
开展种子品种的识别研究是保证种子质量的重要手段。利用高光谱图像技术融合图像特征信息对脱绒棉种的品种进行判别分析。采集4个品种共240粒脱绒棉种样本的高光谱图像数据(400~1 000 nm),提取样本的光谱信息及长、宽、面积、圆形度、等12个形态特征。采用连续投影算法(SPA)选出11个特征波段作为输入结合偏最小二乘判别分析法(PLS-DA)、软独立模式识别法(SIMCA)、最邻近节点算法(KNN)、主成分分析结合线性判别(PCA-LDA)及二次判别(PCA-QDA)进行建模分析,得出PLS-DA建模集和预测集的总体识别率分别为93%和90%。利用图像信息进行建模分析,模型整体的识别率均不高,说明单独使用高光谱图像的形态特征进行分类效果不佳。将特征波段的光谱和形态特征信息进行融合作为输入,建立基于PLS-DA,SIMCA,KNN,PCA-LDA及PCA-QDA的信息融合模型,其精度均比基于光谱或形态信息模型高,其中PLS-DA模型识别效果最好,建模集和预测集总体识别率分别为98%和97%。表明融合高光谱图像的光谱与图像信息可以在少量波段情况下有效的提高脱绒棉种品种的分类检测精度。  相似文献   

15.
马铃薯是我国第四大主要粮食作物,随着马铃薯主食化战略的提出,其市场占比逐年攀升,但各地甚至同区域内马铃薯品质参差不齐,严重影响了马铃薯行业的发展。实现马铃薯品质快速无损检测对马铃薯主食化产业的发展有着重要的现实意义。该研究以研发低成本马铃薯品质无损快速检测装置为目的,采用连续投影算法(SPA)分析光谱仪环境下马铃薯加工品质特征波长的分布情况,根据标准正态变换(SNV)预处理状态下的模型结果选取了一个包含7个波段(700,750,800,850,900,950和1 000 nm)的多通道光谱传感器,并根据马铃薯特殊的表皮特征及内部质地均匀性,设计了一种手持式马铃薯多品质可见/近红外局部漫透射检测装置。利用研发装置建立了马铃薯多品质偏最小二乘预测模型,马铃薯干物质含量、淀粉含量预测模型验证集均方根误差分别为1.05%和1.02%。同时,基于QT的开发工具,采用C语言编写了实时分析设备控制软件,实现了对马铃薯内部品质的一键式实时无损检测。对研发装置检测稳定性和精度进行了试验验证。结果表明,研发的手持式马铃薯多品质传感器检测装置可以满足现场实时检测需求,为马铃薯主食化产业的发展提供技术支撑。  相似文献   

16.
小麦条锈病和白粉病作为我国麦区两种重要病害,在田间常同时发生,为病害防治管理带来困难。基于实验测试获得白粉病、 条锈病叶片光谱数据,探讨采用光谱分析对两种病害进行区分识别及严重度监测的可行性。通过相关分析和独立T检验,筛选出对白粉病和条锈病敏感度差异较显著的波段及光谱特征,包括665~684,718~726 nm等6个波段范围,以及DEP550-770,SIWSI等11个光谱特征。基于这些波段和特征,采用FLDA构建病害判别模型;借助PLSR分析构建病情严重度反演模型。研究结果表明,筛选得到的反射率波段和光谱特征能够较好地区分两种病害,判别模型总体精度达到80%以上,准确度较高。其中,染病比率超过20%的病叶区分和识别精度可达95%。同时,分别基于两种病害敏感光谱特征构建的病情严重度反演模型能够较好地估测病情严重度,两种病害估测均方根误差均低于15%。上述叶片尺度小麦白粉病和条锈病区分和严重度反演模型为进一步研究两种病害冠层尺度的区分和监测提供基础。  相似文献   

17.
茶叶是我国重要的经济作物,对茶叶病害的及早发现与诊断,有利于农业生产者及时采取有效的防护措施。为了实现对茶叶病害的准确判别,采用叶绿素荧光光谱对茶叶的光谱特性展开研究。实验采集了健康茶叶样本90片,藻斑病轻度病害叶片90片,藻斑病重度病害叶片90片,并根据Kennard-Stone算法将样本数按3∶1划分训练集和预测集样本数,其中校正集为200个、验证集为70个。采用叶绿素荧光光谱采集系统对茶叶藻斑病、正常叶片进行光谱采集,其中采集参数设置为:积分时间20 ms,激光功率40 mW。分别分析了患病叶片和正常叶片的光谱响应特性,总体上看,三种叶片光谱主要存在吸收强度差异,光谱走势基本一致。在685和740 nm附近存在叶绿素的荧光峰,其差异主要表现在正常叶片光谱较另外两种叶片光谱吸收强度较高,而重度病害强度最低。然后使用多项式平滑(Savitzky-Golay)对原始光谱进行平滑和降噪处理,建立了偏最小二乘判别模型(PLS-DA),在PLS-DA建模集模型中,误判样品数为3个,误判率为3%;PLS-DA预测集模型中,误判样品个数为5个,误判率为7.1%。然后建立4种不同核函数的支持向量机模型进行比较得到,由RBF作为核函数,经主成分分析法(PCA)降维后的变量建立的SVM模型误判率最低,准确率达到95.72%,最后采用PCA结合线性判别分析方法(LDA)建立的模型效果最好,准确率达到98.9%。其中最优主成分数的选取由留一验证法取得,选用前10个主成分进行建模时,交叉验证准确率最高,达98%。通过模型对比得到PLS-DA建模集和预测集精度都达到90%以上,以四种核函数建立的支持向量机模型中,径向基核函数模型效果较优,达到95.72%。经主成分分析后建立的LDA效果最好,识别率为98.9%。该研究采用叶绿素荧光光谱结合化学计量学对茶叶病害进行识别,为茶叶病害的快速、准确预测提供一种新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号