首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CdS microcrystal-doped alkali borosilicate glasses were prepared by conventional fusion and heat-treatment method. Utilizing Maker fringe method, second-harmonic generation (SHG) was both observed from CdS-doped glasses before and after certain thermal/electrical poling. While because the direction of polarization axes of CdS crystals formed in the samples is random or insufficient interferences of generated SH waves occur, the fringe patterns obtained in samples without poling treatments showed no fine structures. For the poled samples, larger SH intensity has been obtained than that of the samples without any poling treatments. It was considered that the increase of an amount of hexagonal CdS in the anode surface layer caused by the applied dc field increased the SH intensity. The second-order non-linearity χ(2) was estimated to be 1.23 pm/V for the sample poled with 2.5 kV at 360 °C for 30 min.  相似文献   

2.
Utilizing the Maker fringe method, SHG was observed in the 0.95GeS2·0.05In2S3 chalcogenide glass irradiated by the electron beam and the intensity of SH increases with the enhancement of beam current from 15 to 25 nA. According to Raman spectra of the as-prepared and the irradiated one, no distinct micro-structural transformation was found. In this work, the built-in charge model was founded to interpret the poling mechanism of electron beam irradiation, the emission of the secondary electrons and Auger electrons results in the formation of positive region and the absorbed electrons form negative region. The positive region was situated near the poling surface, and the negative region was much deeper than the positive region. Between the two opposite charged regions, a strong space-charge electrostatic field, Edc, is created, which leads to the nonzero χ(2) in the 0.95GeS2·0.05In2S3 glass. The emission of backscattered electrons does no contribution to the formation of Edc.  相似文献   

3.
Utilizing Maker fringe (MF) method, second-harmonic generation (SHG) has been observed within the GeS2-Ga2S3-CdS pseudo-ternary glasses through thermal/electrical poling technique. The SHG phenomenon was considered to be the result of breakage of the glassy macroscopic isotropy originated from the reorientations of dipoles during the thermal/electrical poling process. Under the same poling condition conducted with 5 kV and 280 °C for 30 min, the maximum value of second-order nonlinear susceptibility χ(2) of the poled (100−x)GeS2·x(0.5Ga2S3·0.5CdS) glasses was obtained to be ≈4.36 pm/V when the value of x is equal to 30. Nonlinear dependence of χ(2) on compositions of these glasses can be well explained according to the theory related to the reorientation of dipoles.  相似文献   

4.
The ferroelectric crystal Ba2TiSi2O8 with high second-order optical nonlinearity is precipitated in Sm^3+-doped BaO-TiO2-SiO2 glass by a focused 800hm, 250 kHz and 150fs femtosecond laser irradiation. No apparent blue and red emissions are observed at the beginning, while strong blue emission due to second harmonic generation and red emission due to the f-f transitions of Sm^3+ are observed near the focal point of the laser beam after irradiation for 25s. Micro-Raman spectra confirm that Ba2 TiSi2O8 crystalline dots and lines are formed after laser irradiation. The mechanism of the phenomenon is discussed.  相似文献   

5.
Transparent Er3+-doped bulk nanocrystallized (size of nanocrystals: ∼40 nm) glasses of 15K2O·15Nb2O5·70TeO2·0.5Er2O3 and 10BaO·10Gd2O3·80TeO2·0.5Er2O3 are prepared, and the Judd-Ofelt parameters, (t=2, 4, 6), of Er3+ are evaluated from optical absorption spectra. The change in the molar polarizability due to the nanocrystallization is small in both samples, but a clear decrease in the mean atomic volume due to the nanocrystallization, i.e. more close atom packing, is observed. In both systems, a large decrease is observed in the parameter due to the nanocrystallization, indicating that the degree of the site symmetry of Er3+ ions in nanocrystallized glasses is much higher than that in the precursor glasses. The decrease in the and parameters due to the crystallization is small, suggesting that the covalency of Er3+-O bonds in nanocrystals is not so different from that in the precursor glasses.  相似文献   

6.
The MgO-Ga2O3-SiO2 glass-ceramic (GC) containing MgGa2O4 nanocrystals and glasses doped with Eu3+ ions were prepared by the sol-gel method. The down-conversion and up-conversion luminescence (UCL) properties were studied. The results indicated that the relative intensity of f-f transitions of Eu3+ decreased in contrast with that of charge transfer (CT) absorption with the increase in heating temperature. Using a Xe lamp and 800 nm femtosecond (fs) laser excitation, strong red luminescence of Eu3+ in MgO-Ga2O3-SiO2 glasses and GC was observed.  相似文献   

7.
The complex dielectric susceptibility of Sr 0.61 Ba 0.39 Nb 2 O 6 :Ce 3+ (SBN61:Ce) has been measured at frequencies and temperatures before and after poling. The relaxor behaviour with large polydispersivity observed above the ferroelectric phase transition temperature, T c = 360 and 340 K for x (Ce) = 0 and 0.0066, respectively, is perfectly modeled within the framework of Chamberlin's dynamically correlated domain approach. Below T c the dynamic nanodomain state crosses over into a ferroelectric state with polydispersive domain wall dynamics at very low frequencies. Presumably SBN61:Ce belongs to the three-dimensional random field Ising rather than to the dipole glass universality class. Received 1 October 1999  相似文献   

8.
With Maker fringe measurements, the prominent second harmonic generation was observed in the sol-gel-derived Sb2S3 doped silica glasses irradiated by electron beam, which was related to the space-charge electrostatic field that makes the glasses poled and broken the centrosymmetry of the glasses. By sides, the interface of nanoparticles contributed to the second harmonic intensity as well. The second harmonic intensity increased with the increasing of the irradiating current, accelerating voltage and the concentration of the dopant due to the enhanced built-in electrostatic field. The poled region was located in the surface of the sample about several microns by the TSDC measurements. The second harmonic intensity is almost 10 times larger than that of the base glass due to the existence of microcrystal.  相似文献   

9.
In this paper, we present the spectral results of Dy3+ and Pr3+ (1.0 mol%) ions doped Bi2O3-ZnF2-B2O3-Li2O-Na2O glasses. Measurements of X-ray diffraction (XRD), differential scanning calorimetry (DSC) profiles of these rare-earth ions doped glasses have been carried out. From the DSC thermograms, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures have been evaluated. The direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. The emission spectrum of Dy3+:glass has shown two emission transitions 4F7/26H15/2 (482 nm) and 4F7/26H13/2 (576 nm) with an excitation at 390 nm wavelength and Pr3+:glass has shown a strong emission transition 1D23H4 (610 nm) with an excitation at 445 nm. Upon exposure to UV radiation, Dy3+ and Pr3+ glasses have shown bright yellow and reddish colors, respectively, from their surfaces.  相似文献   

10.
Room temperature electron paramagnetic resonance (EPR) spectra and temperature dependent magnetic susceptibility data have been obtained on bulk x(ZnO,Fe2O3)(65−x)SiO220(CaO, P2O5)15Na2O (6≤x≤21 mole%) glasses prepared by melt quenching method. EPR spectra of the glasses revealed absorptions centered at g≈2.1 and 4.3. The variations of the intensity and line width of these absorption lines with composition have been interpreted in terms of the variation in the concentration of the Fe2+ and Fe3+ ions in the glass and the interaction between the iron ions. EPR and magnetic susceptibility data of the glasses reveal that both Fe2+ and Fe3+ ions are present in the glasses, with their relative concentration being dependent on the glass composition. The studies reveal superexchange type interactions in these glasses, which are strongly dependent on their iron content.  相似文献   

11.
Transparent surface crystallized glasses containing CdGa2S4 nonlinear optical crystal were prepared by the 70GeS2 · 15Ga2S3 · 15CdS (GGC15) chalcogenide glass. Average diameters of crystallites are about 150 nm and 600 nm for heating at 405 °C for 48 and 108 h (named GGC15-48 and GGC15-108), respectively, and the thickness of the surface crystallized layer was approximately 15 μm. By using the Maker fringe measurement, prominent second-harmonic generation was observed from these crystallized glasses, and the χ(2) of the GGC15-48 sample is calculated to be as well as 38.85 pm/V, and the value is 13.7 pm/V for the GGC15-108. They are promising to be applied in photoelectric and all-optical field in the future.  相似文献   

12.
The electronic structures of ABi2Ta2O9 (A=Ca, Sr, and Ba) were calculated by using first-principles under optimized structure. As the size of A-site cation decreases from that of Ba2+ to Ca2+, the band-gap between O 2p and Ta 5d increases from 2.0 to 2.9 eV, which responses to the stronger orbital hybridizations between Ta 5d and O 2p orbits favoring improvement of the ferroelectric property, decrease in leakage current, and increase in both spontaneous polarization and Curie temperature by the structural distortion. In contrast to CaBi2Ta2O9 and SrBi2Ta2O9, the hybridization between Ba 5p orbits and O 2p orbits in BaBi2Ta2O9 has better structural stability.  相似文献   

13.
Studies of structural and electrical properties have been carried out on a number of glasses with wide ranging compositions in the glass systems Li2O·MO·Bi2O3·B2O3 (where M=Zn or Cd), in order to understand the effect of transition metal (TM) ions on the structure of these glasses. The density and molar volume measurements have also been made to understand the structural changes occurring in these glasses. The dc conductivity measured in the temperature range 423-623 K obeys Arrhenius law. It increases with increase in Li2O/MO ratio. The results of infrared spectra indicate that TM ions (Zn2+ or Cd2+) behave as network former in the present system. Boron exists in both tri- and tetra-hedral units in these glasses and no boroxol ring formation takes place in the glass structure. Values of theoretical optical basicity have also been reported.  相似文献   

14.
The ternary MoO3-La2O3-B2O3 glasses containing a large amount of MoO3 (10-50 mol%) are prepared, and their structure and crystallization behavior are examined from the Raman scattering spectrum measurements and X-ray diffraction analyses. It is found that the glass transition and crystallization temperatures and the thermal stability against crystallization decrease with increasing MoO3 content. It is suggested that the main coordination state of Mo6+ ions in the glasses is isolated (MoO4)2− tetrahedral units giving strong Raman bands at 830-860 and 930 cm−1. It is found that the crystalline phases in the crystallized glasses are mainly LaMoBO6 and LaB3O6, and the main crystallization mechanism in MoO3-La2O3-B2O3 glasses is surface crystallization. LaMoBO6 crystals are found to give strong Raman bands at 810-830 and ∼910 cm−1.  相似文献   

15.
ZnO-Sb2O3-B2O3 glasses containing different concentrations of MnO ranging from 0 to 1.0 mol% were prepared. A number of studies, viz. optical absorption, infrared and ESR spectra and magnetic susceptibility, were carried out as a function of manganese ion concentration. The analysis of the results indicate that manganese ions mostly exist in Mn2+ state in these glasses when the concentration of MnO≤0.6 mol% and above this concentration, these ions seem to exist in Mn3+ state in the glass network.  相似文献   

16.
Dense composites were prepared through incorporating the dispersed Ni0.8Zn0.2Fe2O4 ferromagnetic particles into Sr0.5Ba0.5Nb2O6 ferroelectric matrix. Extrinsic dielectric relaxation and associated high permittivities of the materials are reported in the composites. We used an ideal equivalent circuit to explain electrical responses in impedance formalism. A Debye-like relaxation in the permittivity formalism was also found. Interestingly, real permittivity (ε′) of the sample containing 30% Ni0.8Zn0.2Fe2O4 shows obvious independence of the temperature at 100 kHz. Dielectric relaxation and high-ε′ properties of the composites are explained in terms of the Maxwell-Wagner (MW) polarization model.  相似文献   

17.
Zinc phosphate glasses doped with Gd2O3:Eu nanoparticles and Eu2O3 were prepared by conventional melt-quench method and characterized for their luminescence properties. Binary ZnO-P2O5 glass is characterized by an intrinsic defect centre emission around 324 nm. Strong energy transfer from these defect centres to Eu3+ ions has been observed when Eu2O3 is incorporated in ZnO-P2O5 glasses. Lack of energy transfer from these defect centres to Eu3+ in Gd2O3:Eu nanoparticles doped ZnO-P2O5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between the luminescent centre and Eu3+ ions. Both doped and undoped glasses have the same glass transition temperature, suggesting that the phosphate network is not significantly affected by the Gd2O3:Eu nanoparticles or Eu2O3 incorporation.  相似文献   

18.
Stabled hexagonal phase Sr1−xBaxAl2O4:Eu2+ (x=0.37-0.70) was prepared by solid-state method. Result revealed that the structure behavior of the SrAl2O4:Eu2+ calcined at 1350 °C in a reducing atmosphere for 5 h strongly depended on the Ba2+ concentration. With increasing Ba2+ concentration, a characteristic hexagonal phase can be observed. When 37-70% of the strontium is replaced by barium, the structure of the prepared sample is pure hexagonal. Photoluminescence and excitation spectra of the samples with different x and doped with 2% Eu2+ were investigated. Changes in the emission spectra were observed in the two different phases. The green emission at 505 nm from Eu2+ was found to be quite strong in the hexagonal phase. The intensity and peak position of the green luminescence from Eu2+ changed with increasing content of Ba2+. The strongest green emission was obtained from Sr0.61Ba0.37Al2O4:Eu2+. The decay characteristics of Sr1−xBaxAl2O4:Eu2+ (x=0.37-0.70) showed that the life times also varied with the value of x. Furthermore, the emission colors and decay times varying with x could be ascribed to the variation of crystal lattice.  相似文献   

19.
Judd-Ofelt analyses of Nd3+ ions in the oxyfluoride glasses and glass ceramics containing CaF2 nanocrystals are performed to evaluate the intensity parameters Ω2,4,6, spontaneous emission probability, radiative lifetime, quantum efficiency, as well as stimulated emission cross-section. The influences of Nd3+-doping level and heating temperature on these parameters for the 4F3/24IJ (J=9/2, 11/2, and 13/2) transitions are systematically discussed. The decrease of intensity parameter Ω2 evidences the incorporation of Nd3+ ions into CaF2 nanocrystals after crystallization. With increasing of Nd3+-doping level, the measured lifetime and quantum efficiency gradually decrease, while the stimulated emission cross-section keeps almost unchanged. For 1.0 mol% Nd3+-doped sample, both the emission intensity and the measured lifetime enhance with increasing of heating temperature up to 650 °C. The results indicate that the investigated glass ceramics are potentially applicable as the 1.06 um laser host.  相似文献   

20.
The temperature dependence of the photoluminescence spectra of the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 has been reported. The temperature behaviours of the 1.57, 1.67 and 1.73 eV bands indicate a phase transition at 110 K. This is attributed to a structural phase transition in the charged nanoshell. Analysis of the temperature dependence of 1.67 eV band intensity with a thermal quenching model indicated the existence of a phonon mode at 1153 cm−1. This mode is identified in the Raman spectra measurement. The intensity of the 1.73 eV band showing an anomalous behaviour at 210 K is attributed to a transition from a crystalline phase to an amorphous phase in the charged nanoshell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号