首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Utilizing Maker fringe (MF) method, second-harmonic generation (SHG) has been observed within the GeS2-Ga2S3-CdS pseudo-ternary glasses through thermal/electrical poling technique. The SHG phenomenon was considered to be the result of breakage of the glassy macroscopic isotropy originated from the reorientations of dipoles during the thermal/electrical poling process. Under the same poling condition conducted with 5 kV and 280 °C for 30 min, the maximum value of second-order nonlinear susceptibility χ(2) of the poled (100−x)GeS2·x(0.5Ga2S3·0.5CdS) glasses was obtained to be ≈4.36 pm/V when the value of x is equal to 30. Nonlinear dependence of χ(2) on compositions of these glasses can be well explained according to the theory related to the reorientation of dipoles.  相似文献   

2.
Transparent glass ceramics were prepared by heat treating of the as-prepared 80GeS2 · 10Ga2S3 · 10CdI2 glass at 370 °C (Tg + 15 °C) for 72 h (labeled as GGCd10-370). The existence of α-CdGa2S4 crystal in GGCd10-370 glass ceramics has been testified by XRD and Raman spectroscopy. Using the typical Maker fringe technique, SHG was observed in the original transparent GGCd10-370 glass ceramics successfully, which is mainly ascribed to the α-CdGa2S4 nonlinear optical microcrystal. And the SH intensity is almost 0.8 times larger than that of the standard quartz reference. It can be also deduced that the thickness of crystalline layer is a little larger than the coherent length, lc ≈ 2.7 μm.  相似文献   

3.
Transparent surface crystallized glasses containing CdGa2S4 nonlinear optical crystal were prepared by the 70GeS2 · 15Ga2S3 · 15CdS (GGC15) chalcogenide glass. Average diameters of crystallites are about 150 nm and 600 nm for heating at 405 °C for 48 and 108 h (named GGC15-48 and GGC15-108), respectively, and the thickness of the surface crystallized layer was approximately 15 μm. By using the Maker fringe measurement, prominent second-harmonic generation was observed from these crystallized glasses, and the χ(2) of the GGC15-48 sample is calculated to be as well as 38.85 pm/V, and the value is 13.7 pm/V for the GGC15-108. They are promising to be applied in photoelectric and all-optical field in the future.  相似文献   

4.
Raman investigations were carried out for various compositions of chalcogenide glasses in the GeS2-Ga2S3-CdS system. Addition of Ga2S3 into GeS2 results in the formation of metal-metal bonds and edge-shared GaS4/2 tetrahedra. Ge2+ ions may surround [GaS4/2]1− tetrahedra acting as charge compensators. Upon the addition of CdS into the GeS2-Ga2S3 system, the number of the metal-metal bonds and edge-shared GaS4/2 tetrahedra decreases, resulting in the formation of corner-shared tetrahedra with non-bridging sulfurs (NBS). Cd2+ ions can be dissolved into the glass network as charge compensators for these NBS and exited few [GaS4/2]1− tetrahedra. The high solubility of CdS is ascribed to the dissociation of metal-metal bonds and edge-shared tetrahedra in these Ga-containing glasses.  相似文献   

5.
用熔融淬冷法制备了掺Er3+的80GeS2-10In2S3-10CsI(mol%)硫卤玻璃样品,测试了样品的热学稳定性、喇曼光谱、吸收光谱以及上转换光谱,分析了Er3+离子在该玻璃中的上转换发光机理.应用Judd-Ofelt理论计算分析了Er3+离子在该样品中的强度参量Ωt(t=2,4,6)、自发辐射跃迁几率A、荧光分支比β以及辐射寿命τrad等光谱参量.在980 nm LD泵浦激发下,首次在该种玻璃中观察到强烈的绿光(526 nm、549 nm),分别对应于2H11/2→4I15/2和4S3/2→4I15/2的跃迁,其中549 nm处绿光较强.549 nm处上转换荧光寿命为0.34 ms,量子效率为69%.同时研究了绿光(526 nm、549 nm)上转换发光强度随泵浦激发功率的变化,其发光曲线拟合斜率分别为1.71和2.03,表明绿光是双光子吸收过程.研究结果表明:掺Er3+的80GeS2-10In2S3-10CsI硫卤玻璃是一种上转换绿光激光器的潜在基质材料.  相似文献   

6.
Room temperature Raman spectra of samples on four serials within GeS2-Ga2S3-CsCl glassy system have been investigated systematically. Based on the analysis of the local coordination surroundings of Cs+ ions, the similarities and changes of Raman spectra for glass Ga2S3-2CsCl and bridged molecular GaCl3 were explained successfully. With a profound consideration of the effect of Cs+ ions on mixed anion units (GaS4−xClx) and bridged units (Ga2S6−xClx) and the corresponding micro-structural model, the Raman spectral evolution of the samples within GeS2-Ga2S3-CsCl glassy system was reasonably elucidated.  相似文献   

7.
Ultrafast third-order nonlinear optical responses of GeS2-In2S3-CsI chalcohalide glasses have been measured by using the femtosecond time-resolved optical Kerr effect (OKE) technique at a wavelength of 820 nm. The third-order nonlinear susceptibility was estimated to be as large as 5.12×10−13 esu. The full width at half maximum of the Kerr signal was 120 fs and its response was dominantly assigned to the ultrafast distortion of the electron cloud. The relationship between the structural units and the third-order nonlinear optical responses was analysed by Raman spectra. It is suggested that the covalent bonds of S-Ge or S-In constituting the tetrahedral units [GeS4/2] or [InS4−xIx], respectively, play an important role in the ultrafast third-order nonlinear optical responses of these chalcohalide glasses.  相似文献   

8.
0.56GeS2-0.24Ga2S3-0.2KI (mol%) chalcohalide glass was prepared and second-harmonic generation was observed by the thermal poling process. Second-order optical nonlinearity in the glass was also investigated by different poling temperature, voltage and time to optimize the poling parameters to improve χ (2). The maximum χ (2) in our study as large as 3.74 pm/V was obtained under the optimized poling condition with 5.2 kV, 260°C and 120 minutes.  相似文献   

9.
The reaction pathway and kinetics of α-CuInSe2 formation from a glass/In2Se3/CuSe polycrystalline bilayer precursor film were investigated using time-resolved, in situ high-temperature X-ray diffraction. Bilayer glass/In2Se3/CuSe precursor films were deposited on thin glass substrates in a migration enhanced molecular beam epitaxial deposition system. These films were then temperature ramp annealed or isothermally soaked while monitoring the phase evolution. The initial In2Se3 and CuSe reactant phases were directly transformed to α-CuInSe2 without any detectable intermediate phase. Kinetic parameters were estimated using the Avrami and parabolic diffusion controlled reaction models. The parabolic reaction model fitted the experimental data better than the Avrami model over the entire temperature range (230-290 °C) of the set of isothermal experiments, with an estimated activation energy of 162 (±5) kJ/mol.  相似文献   

10.
α-Fe2O3-In2O3 mixed oxide nanoparticles system has been synthesized by hydrothermal supercritical and postannealing route, starting with (1−x)Fe(NO3)3·9H2xIn(NO3)3·5H2O aqueous solution (x=0-1). X-ray diffraction and Mössbauer spectroscopy have been used to study the phase structure and substitutions in the nanosized samples. The concentration regions for the existence of the solid solutions in the α-Fe2O3-In2O3 nanoparticle system together with the solubility limits of In3+ ions in the hematite lattice and of Fe3+ ions in the cubic In2O3 structure have been evidenced. In general, the substitution level is considerably lower than the nominal concentration x. A justification of the processes leading to the formation of iron and indium phases in the investigated supercritical hydrothermal system has been given.  相似文献   

11.
Room temperature Raman scattering measurements of samples of the (1−x)GeS2-xIn2S3 (x=0.00-0.35) system have been conducted together with the FTIR transmission spectra of partial samples. Based on the Raman scattering and FTIR transmission spectra of the prepared defect spinel polycrystalline In2S3, the additional peaks at 306 and 245 cm−1 were ascribed to the local symmetric stretching vibration of InS4 tetrahedra and InS6 octahedra, respectively. According to the Raman scattering spectral evolution of the Ge-In sulfide glasses, the microstructure of the studied glasses was considered to be that S3Ge-GeS3 and S3In-InS3 ethane-like units originated from the sulfur deficient with the addition of In2S3 are homogeneously dispersed in a disordered polymer network formed by GeS4, InS4 tetrahedra and a small quantity of InS6 octahedra interconnected by sulfur bridges.  相似文献   

12.
Near-infrared luminescence is observed from bismuth-doped GeS2-Ga2Sa chalcogenide glasses excited by an 808 nm laser diode. The emission peak with a maximum at about 1260 nm is observed in 80GeS2-2OGa2 Sa:O.fBi glass and it shifts toward the long wavelength with the addition of Bi gradually. The full width of half maximum (FWHM) is about 200 nm. The broadband infrared luminescence of Bi-doped GeS2-Ga2Sa chalcogenide glasses may be predominantly originated from the low valence state of Bi, such as Bi+. Raman scattering is also conducted to claxify the structure of glasses. These Bi-doped GeS2 Ga2Sa chalcogenide glasses can be applied potentially in novel broadband optical fibre amplifiers and broadly tunable laser in optical communication system.  相似文献   

13.
Sealing quality lithium zinc silicate (LZS) glasses of compositions (wt.%) (a) LZSL- Li2O: 12.65, ZnO: 1.85, SiO2: 74.4, Al2O3: 3.8, K2O: 2.95, P2O5: 3.15, B2O3: 1.2 (low ZnO), and (b) LZSH- Li2O: 8.9, ZnO: 24.03, SiO2: 53.7, Na2O: 5.42, P2O5: 2.95, B2O3: 5 (high ZnO) were prepared by conventional melt-quench technique and converted to glass-ceramics by controlled crystallization process. The electrical properties of these samples were measured using ac impedance spectroscopy technique over a frequency range of 10 Hz-15 MHz at several temperatures in the range of 323-673 K. The ac conductivity, dc conductivity, dielectric constant and loss factor were obtained from these measurements. The dc conductivity (σdc) follows the Arrhenius behaviour with temperature. It is observed that σdc in LZSL glass is significantly higher than in the LSZH glass and the activation energies for σdc for LZSL and LZSH glasses are 0.59 and 1.08 eV, respectively. It further observed that the conductivity value decreases nearly one order of magnitude on conversion to glass-ceramics. The behaviour is explained on the basis of distributions and nature of alkali ions and network structures in these samples.  相似文献   

14.
CuInSe2/In2O3 structures were formed by depositing CuInSe2 films by stepwise flash evaporation onto In2O3 films, which were grown by DC reactive sputtering of In target in presence of (Ar+O2) gas mixture. Phase purity of the CuInSe2 and In2O3 films was confirmed by Transmission Electron Microscopy (TEM) studies. X-ray diffraction (XRD) results on CuInSe2/In2O3/glass structures showed sharp peaks corresponding to (112) plane of CuInSe2 and (222) plane of In2O3. Rutherford Backscattering Spectrometry (RBS) investigations were carried out on CuInSe2/In2O3/Si structures in order to characterize the interface between In2O3 and CuInSe2. The results show that the CuInSe2 films were near stoichoimetric and In2O3 films had oxygen deficient composition. CuInSe2/In2O3 interface was found to include a ∼20 nm thick region consisting of copper, indium and oxygen. Also, the In2O3/Si interface showed the formation of ∼20 nm thick region consisting of silicon, indium and oxygen. The results are explained on the basis of diffusion/reaction taking place at the respective interfaces.  相似文献   

15.
16.
林常规  李卓斌  覃海娇  倪文豪  李燕颖  戴世勋 《物理学报》2012,61(15):154212-154212
硫系玻璃晶化过程中析出晶相的控制是硫系玻璃陶瓷制备中的一个重要环节. 在制得的65GeS2·25Ga2S3·10CsI(GGC25)和70GeS2·20Ga2S3·10CsI(GGC20)玻璃和玻璃陶瓷基础上, 利用可见—近红外透过光谱, SEM, XRD, Raman光谱等测试技术表征了其透过性能、晶粒尺寸、晶相类型等信息. 研究发现在这两组玻璃样品中少量的组分差别就能导致其显著的析晶行为改变: GGC20玻璃在热处理过程中析出的是GeS2晶体; GGC25样品则拥有两步析晶过程, 其率先析出Ga2S3, 而后才有GeS2晶体出现. 此外, 研究讨论了这种析晶行为与组成的依赖关系及其与玻璃网络结构之间联系, 可为今后硫系玻璃的可控晶化研究提供实验依据和理论指导.  相似文献   

17.
李卓斌  林常规  聂秋华  徐铁峰  戴世勋 《物理学报》2012,61(10):104207-104207
用传统的熔融急冷法制备了组分为(100-2x) GeS2-xGa2S3-xCsCl (x= 15, 20, 25 mol%)系列硫卤玻璃, 测试了样品玻璃的吸收光谱. 采用Z-扫描方法测试了样品的三阶非线性光学特性. 分析了激光光子能量与玻璃三阶非线性光学特性的关系,并研究了组分变化对玻璃的三阶非线性性能的影响. 研究结果表明,光子能量的少许改变可以使非线性吸收系数在一个较大的范围内变化,随着光子能量的增大, 玻璃的非线性吸收系数β 增大;当光子能量趋近于0.5Eg时, β值趋近于0,玻璃有最佳的品质因子; 玻璃样品中CsCl含量的增加使得玻璃的光学带隙Eg增大,短波截止边蓝移,非线性吸收系数β 减小. 但是由于结构与带隙对光学非线性的影响相反,非线性折射率γ 值变化不大. 该结果表明样品的光学非线性性能由光学带隙和结构两方面因素共同决定,对今后研究全光开关用硫系玻璃具有一定的指导意义和参考价值.  相似文献   

18.
Glasses with compositions 41CaO(52 − x)SiO24P2O5·xFe2O33Na2O (2 ≤ x ≤ 10 mol.%) were prepared by melt quenching method. Bioactivity of the different glass compositions was studied in vitro by treating them with simulated body fluid (SBF). The glasses treated for various time periods in SBF were evaluated by examining apatite formation on their surface using grazing incidence X-ray diffraction, Fourier transform infrared reflection spectroscopy, scanning electron microscopy and energy dispersive spectroscopy techniques. Increase in bioactivity with increasing iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of immersion time in SBF and glass composition.  相似文献   

19.
The valence band electronic structures of Mn- and/or Fe-doped In2O3, i.e., In2O3:Mn, In2O3:Fe, and In2O3:(Mn, Fe), are investigated by photoemission yield measurements. Significant changes are observed in the threshold energy of photoemission, depending on the doped magnetic ions, which indicates that an additional occupied band appears above the top of the valence band of In2O3 owing to doping with Mn and/or Fe ions. It is confirmed that the order of the threshold energies of photoemission, EPET, is EPET(In2O3:Mn)<EPET(In2O3:(Mn, Fe))<EPET(In2O3:Fe)<EPET(In2O3). To gain a better understanding of these results, first-principles molecular orbital calculations are also carried out, which successfully explain the observed changes in the photoemission threshold energies.  相似文献   

20.
Exciton spectra are studied in CuGaXIn1−XS2 solid solutions by means of photoreflectivity and wavelength modulation spectroscopy at liquid nitrogen temperature. The exciton parameters, dielectric constants, and free carrier effective masses are deduced from experimental spectra by calculations in the framework of a model taking into account the spatial dispersion and the presence of a dead-layer. The crystal field and spin orbit valence band splitting is calculated as a function of X taking into account the energy position of excitonic lines. The energy band structure of CuGaXIn1−XS2 and CuGaXIn1−XSe2 compounds is derived from optical spectra at photon energies higher than the fundamental band gap. The energies of optical transitions are tabulated for X values from 0 to 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号