首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2031篇
  免费   43篇
  国内免费   7篇
化学   1144篇
晶体学   29篇
力学   54篇
数学   241篇
物理学   613篇
  2022年   25篇
  2020年   33篇
  2019年   42篇
  2018年   34篇
  2017年   29篇
  2016年   59篇
  2015年   33篇
  2014年   39篇
  2013年   135篇
  2012年   93篇
  2011年   118篇
  2010年   66篇
  2009年   56篇
  2008年   67篇
  2007年   77篇
  2006年   69篇
  2005年   52篇
  2004年   54篇
  2003年   42篇
  2002年   30篇
  2001年   42篇
  2000年   37篇
  1999年   19篇
  1997年   17篇
  1996年   22篇
  1995年   19篇
  1994年   44篇
  1993年   30篇
  1992年   45篇
  1991年   28篇
  1990年   39篇
  1989年   28篇
  1988年   25篇
  1987年   21篇
  1986年   27篇
  1985年   26篇
  1984年   35篇
  1983年   27篇
  1982年   30篇
  1981年   25篇
  1980年   19篇
  1979年   36篇
  1978年   36篇
  1977年   27篇
  1976年   19篇
  1975年   20篇
  1974年   18篇
  1973年   23篇
  1972年   14篇
  1970年   14篇
排序方式: 共有2081条查询结果,搜索用时 31 毫秒
1.
We study how visible light influences the activity of an electrocatalyst composed of Au and Pt nanoparticles. The bimetallic composition imparts a dual functionality: the Pt component catalyzes the electrochemical oxidation of ammonia to liberate hydrogen and the Au component absorbs visible light by the excitation of localized surface plasmon resonances. Under visible-light excitation, this catalyst exhibits enhanced electrochemical ammonia oxidation kinetics, outperforming previously reported electrochemical schemes. We trace the enhancement to a photochemical potential resulting from electron–hole carriers generated in the electrocatalyst by plasmonic excitation. The photopotential responsible for enhanced kinetics scales linearly with the light intensity—a general design principle for eliciting superlative photoelectrochemical performance from catalysts comprised of plasmonic metals or hybrids. We also determine a photochemical conversion coefficient.  相似文献   
2.
Ghosh  S.  Dubey  S.  Jain  K. 《Physics of the Solid State》2020,62(4):628-635
Physics of the Solid State - Temporal instability of acoustic wave is investigated in an infinite semiconductor plasma using classical hydrodynamic approach. We consider a homogeneous semiconductor...  相似文献   
3.
4.
5.
Efficient water electrolysis catalyst is highly demanded for the production of hydrogen as a sustainable energy fuel. It is reported that cobalt derived nanoparticle (CoS2, CoP, CoS|P) decorated reduced graphene oxide (rGO) composite aerogel catalysts for highly active and reliable hydrogen evolution reaction electrocatalysts. 7 nm level cobalt derived nanoparticles are synthesized over graphene aerogel surfaces with excellent surface coverage and maximal expose of active sites. CoS|P/rGO hybrid aerogel composites show an excellent catalytic activity with overpotential of ≈169 mV at a current density of ≈10 mA cm?2. Accordingly, efficient charge transfer is attained with Tafel slope of ≈52 mV dec?1 and a charge transfer resistance (Rct) of ≈12 Ω. This work suggests a viable route toward ultrasmall, uniform nanoparticles decorated graphene surfaces with well‐controlled chemical compositions, which can be generally useful for various applications commonly requiring large exposure of active surface area as well as robust interparticle charger transfer.  相似文献   
6.
We have used the condensation method to synthesize 2-acetyl-5-methylsemicarbazone ligand. Manganese(II) and Cobalt(II) complexes having formula [ML2]X2 were synthesized where M = Mn(II) and Co(II), L = ligand, X = Cl, CH3COO, NO3, ½SO42−. The characterization data suggests the octahedral geometry for all the synthesized complexes. Tridentate nature of the 2-acetyl-5-methylsemicarbazone ligand was revealed by IR studies. Molar conductance analysis suggested the electrolytic nature of the complexes. The theoretical study includes geometrical optimization, HOMO-LUMO energy gap, energetic parameters and dipole moment. These results also confirmed the tridentate nature of the ligand and the octahedral geometry of complexes. The molecular electrostatic potential (MEP) study suggested the reactive sites for an electrophilic or nucleophilic attack in the ligand. We tested the synthesized compounds for their antifungal and antibacterial action via well diffusion method and found that parent ligand after the coordination with the metal ion showed more effective inhibition against bacteria and fungi.  相似文献   
7.
Zeolite crystals can be used as seeds or aluminosilicate sources in syntheses to control polymorphs and/or reduce the quantity of organics used as structure-directing agents. A frequently invoked hypothesis for interzeolite transformations is that zeolites share some underlying similarity in structure, most notably in cases pertaining to organic-free syntheses. Herein, we show for the first time that ZSM-5 (MFI) can be directly obtained from USY (FAU) through an interzeolite transformation between parent–daughter structures lacking common building units in the absence of a structure-directing agent and seeds. We show that interzeolite transformation leads to a crystalline product with fewer defects. Our findings also reveal that ZSM-5 is a metastable intermediate that undergoes further transformation to mordenite (MOR) and quartz. The MFI-to-MOR transition is counter to reported trends for which transformations lead to structures with reduced molar volume. Herein, we propose mechanistic arguments that suggest the driving force for interzeolite transformation is more complex than guidelines posited in the literature.  相似文献   
8.
The conventional condensation and refluxing process was employed to synthesize Ni(II) and Cu(II) complexes of Methylcarbamatethiosemicarbazone ligand. Reactions were carried out at the pH of 7. The molar ratio of the ligand and metal salt was 2:1. The structures of the synthesized metal complexes were suggested by different analytical techniques such as magnetic susceptibility, molar conductance, IR, EPR and UV spectroscopy. Experimental studies confirmed the octahedral geometry for all the complexes. The geometry of the ligand and complexes were also confirmed by theoretical studies. The complexes were investigated for biological action against pathogenic fungi (C. krusei, C. albican) and bacteria (S. aureus, E. coli). The antimicrobial results confirmed superior inhibition potential of the metal complexes as compared with the parent ligand. The enhanced antimicrobial activities might be due to the chelation. Molecular-docking assays confirmed the strong interaction of ligand with target antimicrobial protein DNA gyrase-B.  相似文献   
9.
Ring-opening (ROP) and enzymatic copolymerization (ECP) are among the most widely used approaches for synthesizing copolymers of polycaprolactone (PCL). It involves multiple-step reactions and the utilization of enzymes that make the process a lot more complicated, time consuming, and expensive. Atom transfer radical polymerization (ATRP) has been adopted to synthesize a novel amphiphilic copolymer in our study. The study presents a method to eliminate the ROP/ECP multiple steps in monomer polymerization thus making the process simpler and smoother. The synthesis of cationic polymer micelles copolymer of PCL-PGMA (polycaprolactone grafted poly glycidyl methacrylate) was carried out using direct functionalization of hydroxy group in crude PCL to achieve a higher degree of functionalization, i.e., 12.8% for macroinitiator. FTIR and 1H-NMR confirmed the successful synthesis of the copolymer with better control over the molecular weight with a PDI (1.84). DSC and XRD results showed the reduction of crystallinity by 86.81%, making copolymer more compatible for drug delivery application. The synthesized copolymer was further converted to nano-micelles drug carrier having an average size of 96.08 ± 21.22 nm. The drug encapsulation efficiency achieved was 60.0 ± 1.7%, and nano-micelles rendered a slow and controlled release of naproxen with long-term storage stability.  相似文献   
10.
This paper studies the addition (0–40% w/w) of natural zeolite (NZ, 84% clinoptilolite) in blended cements made with Portland cement (PC) with low and medium C3A content. The isothermal calorimetry was used to understand the effect of NZ on the early cement hydration. For low C3A cement, the addition of NZ produces mainly a dilution effect and then the heat released curve is similar to plain cement with lower intensity. For medium C3A cement, the curve shows the C3S peak in advance and a high intensity of third peak attributed to C3A hydration. The high cation fixed of NZ reduces the ions concentration (especially alkalis) in the mixing water stimulating the PC hydration. The flowability decreases when the NZ replacement level increases. Results of Fratini’s test show that NZ with both PCs used presents slow pozzolanic activity. At early age, XRD and FTIR analyses confirm that hydration products are the same as that of the corresponding PC and the CH is progressively reduced after 28 days and some AFm phases (hemi- and monocarboaluminate) appear depending on the NZ percentage and the PC used. For low replacement levels, the compressive strength is higher than the corresponding PC from 2 to 28 days. For high replacement levels, the early compressive strength is lower than that of corresponding plain PC and the pozzolanic reaction improves the later compressive strength of blended cements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号