首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porous silica films were synthesized via a sol–gel method using a nonionic amphiphilic triblock copolymer F127 as the structural template. Mesoporosities of the prepared silica films were investigated by Doppler broadening of positron annihilation radiation (DBAR) spectroscopy, positron annihilation gamma-ray energy spectroscopy based on a slow positron beam, and ellipsometry. For the mesoporous silica films, the variation of positron annihilation line shape parameter reveals that the porosity of the silica films increases with loading more F127, which is also confirmed by a decrease of refractive index n. Little variation in positron 3γ-annihilation fraction is found for the silica films prepared with F127 loading less than 15 wt%, whereas a remarkable increment is seen for the films with higher loading. This indicates the pore percolation in porous silica films occurs around a loading of F127 with 15 wt%.  相似文献   

2.
Tunable mesoporous titania (TiO2) thin films were synthesized via a sol-gel method using an amphiphilic triblock copolymer F38 as the structural template. The dependence of crystalization, pore morphology and interconnectivity of TiO2 films on the weight ratio of F38 was studied by wide-angle X-ray diffraction, field emission scanning electron microscopy and Doppler broadening of positron annihilation radiation spectroscopy based on a slow positron beam. By loading more F38, the crystallization of TiO2 films is enhanced, accompanied by a decrement in oxygen vacancies/grain boundaries. Smaller and isolated mesopores are formed in the films prepared with F38 less than 15?wt%. The pore percolation occurs when the weight ratio of F38 is up to 20?wt% and larger and interconnected worm-like pores are formed.  相似文献   

3.
Mesoporous silica films and MFI-type pure silica zeolite films were investigated using slow positrons. Detection of the 3γ annihilation fraction was used as a quick test to estimate the emission of orthopositronium (o-Ps) into vacuum. Positronium time-of-flight (TOF) spectroscopy, combined with Monte-Carlo simulation of the detection system was used to determine the energy of o-Ps emitted from the films. Evidence for an efficient o-Ps emission was found in both the mesoporous and silicalite-1. A 3γ fraction in the range of 31-36 % was found in the films with the highest o-Ps yield in each type of porous material, indicating that 40-50 % of the implanted positrons form positronium in the pore systems with very different pore sizes. Time-of-flight measurements showed that the energy of the orthopositronium emitted into vacuum is below 100 meV in the film with 2-3 nm pores at 3 keV positron energy, indicating an efficient slowing down but no complete thermalization in the porous films of 300-400 nm thickness.  相似文献   

4.
Slow positrons and positron annihilation spectroscopy (PAS) have been applied to medical research in searching for positron annihilation selectivity to cancer cells. We report the results of positron lifetime and Doppler broadening energy spectroscopies in human skin samples with and without cancer as a function of positron incident energy (up to 8 μm depth) and found that the positronium annihilates at a significantly lower rate and forms at a lower probability in the samples having either basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) than in the normal skin. The significant selectivity of positron annihilation to skin cancer may open a new research area of developing positron annihilation spectroscopy as a novel medical tool to detect cancer formation externally and non-invasively at the early stages.  相似文献   

5.
Positron annihilation lifetime (PAL) spectroscopy, Doppler broadening of annihilation radiation (DBAR) spectroscopy and Vickers microhardness (Hv) measurements were performed to study the micro- and macro-structure variations during isochronal annealing from room temperature (RT) to 500 °C of commercial pure Al (1 1 0 0), Al-Mn-Mg (3 0 0 4) and Al-Mg-Si (6 2 0 1) alloys. Three annealing stages of microstructures have been identified as recovery, partial recrystallization and complete recrystallization followed by grain growth. A positive correlation between the macroscopic mechanical properties (Hv) and positron annihilation parameters has been achieved for the three samples under investigation.  相似文献   

6.
Corrosion-related defects of pure iron were investigated by measuring Doppler broadening energy spectra (DBES) of positron annihilation and positron annihilation lifetime (PAL). Defect profiles of the S-parameter from DBES as a function of positron incident energy up to 30 keV (i.e. ∼1 μm depth) were analyzed. The DBES data show that S-parameter increases as a function of positron incident energy (mean depth) after corrosion, and the increase in the S-parameter is larger near the surface than in the bulk due to corrosion. Furthermore, information on defect size from PAL data as a function of positron incident energy up to 10 keV (i.e. ∼0.2 μm depth) was analyzed. In the two-state trapping model, the lifetime τ2 = 500 ps is ascribed to annihilation of positrons in voids with a size of the order of nanometer. τ1, which decreases with depth from the surface to the bulk, is ascribed to the annihilation of positrons in dislocations and three-dimensional vacancy clusters. The corroded samples show a significant increase in τ1 and the intensity I2, and near the surface the corroded iron introduces both voids and large-size three-dimensional vacancy clusters. The size of vacancy clusters decreases with depth.  相似文献   

7.
A radioisotope slow positron beam has been built at the Chung Yuan Christian University in Taiwan for the research and development in membrane science and technology. Doppler broadening energy spectra and positron annihilation lifetime have been measured as a function of positron energy up to 30 keV in a polyamide membrane prepared by the interfacial polymerization between triethylenetetraamine (TETA) and trimesoyl chloride (TMC) on modified porous polyacrylonitrile (PAN) asymmetric membrane. The multilayer structures and free-volume depth profile for this asymmetric membrane system are obtained. Positron annihilation spectroscopy coupled with a slow beam could provide new information about size selectivity of transporting molecules and guidance for molecular designs in polymeric membranes.  相似文献   

8.
Four different Fe-Cr binary alloys with Cr content 2.5-11 wt% were studied in details using various methods. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were applied to obtain basic information, required for standard positron annihilation lifetime spectroscopy (PALS) spectra analysis. Additionally, PALS measurements were performed on as-received state as well as on helium implanted specimens. The He implantation was proposed for simulation of radiation damage and obtain high doses even in near surface areas (up to 1 μm). The implantation was based on the SRIM code simulation and next DPA calculations. Final concentration of vacancy type defects were calculated for 250 keV He2+ beam and the maximum was determined in 600 μm depth. Such specimens are very suitable for positron beam study of vacancy type defect mobility as a result of thermal treatment, which will be performed simultaneously in the future.  相似文献   

9.
FeMnSi shape memory alloys (SMAs) have received much attention as one-way SMAs due to their cost-effectiveness. Variable-energy (0-30 keV) positron beam studies have been carried out on a Fe-Mn-Si-Cr-Ni-C alloy with different degrees of deformation. Doppler broadening profiles of the positron annihilation as a function of incident positron energy were shown to be quite sensitive to defects introduced by deformation. The variation of the nature and the concentration of defects are studied as a function of isochronal annealing temperature. These results are correlated with the data measured with the positron annihilation lifetime spectroscopy (PALS). The positron annihilation results are compared to XRD and optical microscopy (OM).  相似文献   

10.
The structure of re-crystallized silicon films is investigated using transmission electron microscopy, spectroscopic ellipsometry and positron annihilation spectroscopy. Samples were prepared via amorphization of the silicon overlayer of silicon-on-insulator substrates, and subsequent thermal annealing. For an annealing temperature of 650 °C we show that the silicon film has a poly-crystalline structure. Its refractive index measured at 1550 nm is comparable to that of crystalline silicon following re-crystallization at 750 °C. Positron measurements indicate a high concentration of open-volume point defects in the re-crystallized films. We discuss the potential importance of these structures with regard to defect engineering for silicon photonic devices.  相似文献   

11.
Doppler broadening of annihilation radiation (DBAR) and positron annihilation lifetime spectroscopy (PALS) have been successfully applied to the study of positronium (Ps)—forming amorphous solids such as polymers and silicon oxide in the bulk. Implementing depth selectivity to DBAR and PALS by combining them with variable-energy positron beams considerably broadens their applicability. Variation of incident positron energy over a wide range enables depth-profiling, whereas tuning of the beam energy enables the studies of surfaces, interfaces and thin films. In this paper, we discuss fundamentals and applications of energy variable DBAR and PALS for Ps—forming polymers and silicon oxide.  相似文献   

12.
Atomic scale properties of thin porous silicon (PSi) layers, characterized by the formation of positronium, are investigated using positron annihilation lifetime spectroscopy in the temperature range 20-300 K under 10−7 Torr vacuum. The longest orthopositronium as well as the shortest parapositronium components are found to have quite low intensities in the thin layer at room temperature. It is also found that at temperatures ≤240 K, these two components do not show up in the spectrum. The reason for this absence of the longest lifetime component is suggested.  相似文献   

13.
Positron annihilation lifetime spectra were measured for mesoporous silica films, which were synthesized using triblock copolymer (EO106PO70EO106) as a structure-directing agent. Different positron lifetime spectra for the deposited and calcined films indicated the formation of meso-structure after calcination, which was confirmed by Fourier transform infrared (FTIR) spectra and field emission-scanning electron microscopy (FE-SEM) observation. Open porosity or pore interconnectivity of a silica film might be evaluated by a two-dimensional positron annihilation lifetime spectrum of an uncapped film. Pore sizes and their distributions in the silica films were found to be affected by thermal treatments.  相似文献   

14.
There are many advantages in being able to perform positron annihilation lifetime spectroscopy (PALS) using a variable energy positron beam, the most obvious being the easy identification of different defect types at different depths. The difficulty in conducting variable energy (VE) PALS studies lies in the fact that a “start” signal is required to signal the entry of the positron into the target. Two methods have been used to overcome this problem, namely the bunching technique, which employs radio frequency (RF) cavities and choppers, and secondly the use of secondary electrons emitted from the target. The latter technique is in terms of experimental complexity much simpler, but has in the past suffered from poor time resolution (typically ∼500 ps). In this work, we present a series of computer simulations of a design based on the secondary electron emission from thin C-foils in transmission mode which shows that significant improvements in time resolution can be made with resolutions ∼200 ps being in principle possible.  相似文献   

15.
High purity MgO nanopowders were pressed into pellets and annealed in air from 100 to 1400 °C. Variation of the microstructures was investigated by X-ray diffraction and positron annihilation spectroscopy. Annealing induces an increase in the MgO grain size from 27 to 60 nm with temperature increasing up to 1400 °C. Positron annihilation measurements reveal vacancy defects including Mg vacancies, vacancy clusters, microvoids and large pores in the grain boundary region. Rapid recovery of Mg monovacancies and vacancy clusters was observed after annealing above 1200 °C. Room temperature ferromagnetism was observed for MgO nanocrystals annealed at 100, 700, and 1000 °C. However, after 1400 °C annealing, MgO nanocrystals turn into diamagnetic. Our results suggest that the room temperature ferromagnetism in MgO nanocrystals might originate from the interfacial defects.  相似文献   

16.
High purity n-type silicon single crystal with resistivity in the order of 4000 Ω cm has been irradiated with high-energy oxygen ions at room temperature up to a fluence of 5E15 ions/cm2. The energy of the beam was varied from 3 to 140 MeV using a rotating degrader to achieve a depthwise near-uniform implantation profile. Radiation induced defects and their dynamics have been studied using positron annihilation spectroscopy along with isochronal annealing up to 700 °C in steps of 50 °C for 30 min. After annealing the sample at 200 °C for 30 min, formation of silicon tetravacancies has been noticed. The formation of the tetravacancies was found to be due to agglomeration of divacancies present in the irradiated sample. An experimentally obtained positron lifetime value of 338±10 ps has been reported for silicon tetravacancies, which has a very close agreement with the value obtained from recent theoretical calculations. The tetravacancies were found to dissociate into trivacancy clusters upon further annealing. The trivacancies thus obtained were observed to agglomerate beyond 400 °C to form larger defect clusters. Finally, all the defects were found to anneal out after annealing the sample at 650 °C.  相似文献   

17.
Novel highly c-oriented tungsten-doped zinc oxide (WZO) thin films with 1 wt% were grown by pulsed laser deposition (PLD) technique on corning 1737F glass substrate. The effects of laser energy on the structural, morphological as well as optical transmission properties of the films were studied. The films were highly transparent with average transmittance exceeding 87% in the wavelength region lying between 400 and 2500 nm. X-ray diffraction analysis (XRD) results indicated that the WZO films had c-axis preferred orientation with wurtzite structure. Film thickness and the full width at half maximum (FWHM) of the (0 0 2) peaks of the films were found to be dependent on laser fluence. The composition determined through Rutherford backscattering spectroscopy (RBS) appeared to be independent of the laser fluence. By assuming a direct band gap transition, the band gap values of 3.36, 3.34 and 3.31 eV were obtained for corresponding laser fluence of 1, 1.7 and 2.7 J cm−2, respectively. Compared with the reported undoped ZnO band gap value of 3.37 eV, it is conjectured that the observed low band gap values obtained in this study may be attributable to tungsten incorporation in the films as well as the increase in laser fluence. The high transparency makes the films useful as optical windows while the high band gap values support the idea that the films could be good candidates for optoelectronic applications.  相似文献   

18.
Positron probes of the Si(1 0 0) surface that plays a fundamental role in modern science and technology are capable to non-destructively provide information that is both unique to the probe and complimentary to that extracted using other more standard techniques. This paper presents a theoretical study of positron “image-potential” surface states and annihilation characteristics of surface trapped positrons at the Si(1 0 0) surface. Calculations are performed for the reconstructed Si(1 0 0)-p(2 × 2) surface using the modified superimposed-atom method to account for discrete-lattice effects, and the results are compared with those obtained for the non-reconstructed and reconstructed Si(1 0 0)-(2 × 1) and Si(1 1 1)-(7 × 7) surfaces. The effect of orientation-dependent variations of the atomic and electron densities on localization and extent of the positron surface state wave function at the semiconductor surface is explored. The positron surface state wave function is found to extend into the Si lattice in the regions where atoms are displaced from their ideal terminated positions due to the p(2 × 2) reconstruction. Estimates of the positron binding energy and positron annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of Si. The observed sensitivity of annihilation probabilities to crystal face indicates that positron spectroscopy techniques could serve as an important surface diagnostic tool capable of distinguishing different semiconductor surfaces and defining their state of reconstruction.  相似文献   

19.

Nanoparticles of cobalt ferrite prepared by the co-precipitation method with crystallite size varying from 4.7 to 41 nm have been characterized by positron annihilation lifetime spectroscopy. Three lifetime components are fitted to the lifetime data. The shortest lifetime component is attributed to the delocalized positron lifetime shortened by defect trapping. The intermediate lifetime is assigned to the positron annihilation in diffuse vacancy clusters or microvoids at the grain boundaries and at the grain-boundary triple points. The longest component corresponds to the pick-off annihilation of ortho-positronium formed at the larger voids. The variations in these lifetimes and their relative intensities with annealing temperature and crystallite size have been studied in detail.  相似文献   

20.
Formation and accumulation of defect structures at interfaces between polysilanes and vacuum-evaporated gold (Au) electrodes are discussed quantitatively by low energy positron annihilation spectroscopy. The size distribution of the defects at the interface is analyzed based on the values of ortho-positronium (o-Ps) lifetime (τ3), and no effect of the evaporation process is observed in the polymer films. The intensity of o-Ps (I3) indicates no considerable change before and after Au evaporation on dialkyl-substituted polysilanes, however, the values of I3 is increased ∼20% in phenyl-substituted polysilane (PMPS) by the evaporation. The I3 dependence on incident positron energy suggests the formation of the defects not only at an Au-PMPS interface but also in PMPS bulk phase as deep as 400 nm from the interface. Phenyl ring dissociation from the polymer backbone will play a significant role in the selective formation of the defects in PMPS. This is the first report on the direct measurement of defect structures at conjugated polymer-metal interface with non-destructive way, implying that electrode fabrication by vacuum evaporation affects the solid state structure of polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号