首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Salomons建立的抛物方程(CNPE)方法可以预测非均匀环境中的声屏障插入损失。但是该方法在声屏障与声源距离较近时会产生较大误差。文中通过理论分析发现产生该问题的原因在于CNPE方法所使用的Gauss初始场仅适用于小仰角(10°以内)范围内的声波。为解决Gauss初始场引起的问题,推导了可以用于较大仰角声波的更高阶数的Gauss初始场。通过数值仿真对比了不同阶数的初始场在CNPE方法中的效果。结果表明:4阶初始场是最适合CNPE方法的初始场,将该初始场与CNPE方法相结合,可以准确预测当声屏障与声源距离较近时的插入损失.   相似文献   

2.
针对利用机会运动声源的反演问题,提出一种对水平阵的非相干波束输出进行重构并获得海底声学参数的反演方法。不同于匹配场反演,该方法利用了声场的平滑平均原理,并且将衰减简正波的影响比例提升。仿真分析表明所提方法相比于匹配场反演对海底衰减系数更加敏感并且对声源的空间位置误差更加宽容。实验数据的反演结果表明研究海域在30~160 Hz频率范围内海底衰减系数随频率的变化关系为(0.34±0.18) f^(1.59±0.27)dB/m(f的单位是kHz),并且给出了由反演出的参数计算的传播损失曲线与实验的声传播损失数据的比较,所提方法比匹配场反演方法更准确地表征了声场传播特征。  相似文献   

3.
郭文成  叶璇 《应用声学》2020,39(6):901-906
为了改善平行声屏障的性能,本文基于有限元仿真的方法对其陷波模态和插入损失进行了研究。其中,陷波模态是平行声屏障的固有性质,与其几何参数有关。当陷波模态处于共振频率时,平行声屏障内部声场的声能量达到峰值,同时声波垂直入射到声屏障的顶端,使声影区的衍射声能也达到峰值,最终导致插入损失显著下降。本文还对3种优化平行声屏障插入损失的方法进行了分析。结果表明,楔形和扩散型声屏障可降低声波的多次反射效应对插入损失的影响,但是对陷波模态的改善较小。而吸声型声屏障有效的抑制了陷波模态对插入损失的不利影响,从而改善了平行声屏障的性能。  相似文献   

4.
声波在气体中传播时,气体的热粘性效应会使声波产生一定程度的衰减,且气体的声吸收系数随温度的升高而增大。由于发动机的排气温度较高,热粘性效应引起的排气管道中的噪声衰减应加以考虑。基于准平面波理论,首次计算了考虑热粘性效应时不同温度、流速和管道尺寸下排气管道中的传递损失,分析了各参数对管道中噪声衰减的影响。结果表明,随着温度和频率的升高热粘性声衰减增强,而气流流速和管道直径的增加会降低直管中的热粘性声衰减。对于简单膨胀腔,传递损失的预测结果表明,热粘性效应使通过频率处的声衰减有所改善。  相似文献   

5.
提出了一种基于大气声传播通道的爆炸声源能量估计方法,通过将计算大气声学的传播能量分布结果与大气中传播的声压幅度衰减模型相结合,使用平流层通道与热层通道传播损失能量比例作为修正量,提高了对爆炸声源能量的估计精度。在多次地面爆炸实验得到的数据中,使用观测距离800 km以上且同时存在平流层通道与热层通道的次声接收信号,对比了平流层顶风速修正的能量估计方法与该文提出的基于大气声传播通道的能量估计方法。实验结果验证了相对于传统风速修正的能量估计方法,该方法可显著降低估计误差。  相似文献   

6.
声学超材料及结构已被广泛研究,其超结构通常利用3D打印技术实现,当结构刚度较小或者面积较大时,由声固耦合所导致的声学效果与设计不符的情况广泛存在。本文针对含有膨胀腔类的超材料,研究了声固耦合对其声学性能的影响,采用有限元计算结合阻抗管实验的方法,得到其传递损失,分析了声固耦合现象对传递损失的影响。结果表明:薄壁膨胀腔结构的作用频率范围与只考虑声学理论计算的设计不符,声固耦合现象对传递损失产生显著影响;采用增加膨胀腔壁厚、减少膨胀腔内径或选择金属材料的方式,都可以使得声固耦合现象对传递损失的影响减小;仿真结果与实验结果基本吻合。该研究结果说明:对于膨胀腔类超材料,当刚度较小或者面积较大时,对其进行声固耦合分析是完全必要的。  相似文献   

7.
为了进一步研究有限长线声源的声场特性,完善有限长线声源声场理论,建立了有限长线声源斜面声场的模型,提出了其理论计算方法。基于仿真结果和数据分析,探讨并得到了有限长线声源斜面声场特性的三个参数与斜面声场特性之间的关系。通过调整斜面倾角α、交点的位置r0以及有限长线声源的长度L,可以有效改善斜面声场的分布。  相似文献   

8.
流管实验装置中声传播计算的模态方法   总被引:4,自引:0,他引:4  
流管实验装置是测量有流动情况下航空发动机消声短舱内声衬声阻抗的主要装置。本文发展了一种解析的模态匹配方法进行在平均流有声衬条件下矩形流管中声传播的计算。用同伦方法求解特征值问题,并与用环绕积分求解的结果进行比较。声场通过轴向阻抗间断面的声压和声质点速度积分相等计算。第一个算例是无流动、硬壁、有限长、考虑端口反射的情况,并与北航流管实验台测量数据进行了对比;第二个算例为有流动情况下有限长声衬管道不考虑端口反射的声场计算,它与文献中NASA流管实验结果和CAA计算结果符合得很好。  相似文献   

9.
沈惠杰  温激鸿  郁殿龙  蔡力  温熙森 《物理学报》2012,61(13):134303-134303
基于多层复合材料结构的二维声隐身斗篷设计思想, 利用主动隔膜声学空腔有效密度可以任意控制这一特性, 设计了主动声学超材料下的无限长圆柱声隐身斗篷. 给出了主动隔膜声学空腔单元的声电元件类比模拟电路图和具体的有效密度控制方法. 进行了主动声学超材料声隐身斗篷的结构建模, 并对平面入射波入射下此圆柱隐身斗篷周围声压分布场进行仿真计算. 结果表明, 平面波在一定频率范围内可以毫无阻碍地透过圆柱斗篷, 似乎不存在这种障碍物, 达到声隐身效果. 同时, 计算了主动声材料斗篷下总散射截面随频率变化曲线, 研究了此斗篷隐身效果随频率的变化特性. 本文从主动控制角度探讨实验实现隐身斗篷的技术问题, 有望给声隐身斗篷实验设计提供一条新的技术途径.  相似文献   

10.
牛凤岐 《应用声学》1990,9(6):44-44
由中国科学技术大学周康源副教授领导的课题组等设计研制的TS-1型体内声衰减测试仪于7月10日在合肥市通过设计定型鉴定。 仪器采用该课题组提出的幅度差法体内声衰减测试原理(详见《声学学报》1990年第2期130—136页),能直接与各种B型超声诊断仪配合,借助于由超声仿真模块测得的数据,可消除声束扩展、衍射、仪器增益、TGC补偿等多种因素的影响,从而获得人体组织中有关区域的平均声衰减斜率。经使用中国科学院声学所研制的标准组织定征模块(tissue characteriz-ation phantom)测试,当所取区域面积不小于2.5  相似文献   

11.
Outdoor sound propagation from road traffic is modelled by solving a boundary integral equation formulation of the wave equation using boundary element techniques in two dimensions. In the first model, the source representing a traffic stream can be considered as a coherent line source of sound. The results can then be transformed to derive a pseudo-three dimensional solution to the problem. In the second model the line source is incoherent. For receivers near the ground, the second model predicted significantly higher values of ground attenuation than the first. The first model generally produced better agreement with ground attenuation results obtained using the U.K. traffic noise prediction model. For conditions when a noise barrier was present and the ground was absorbent, the incoherent line source model generally predicted significantly higher values of attenuation than those from the barrier and ground attenuation calculated separately. Over a range of receiver positions and barrier heights a similar, but less marked effect was observed when the coherent line source model was used. On dual carriageway roads, it is possible to incorporate barriers on the central reservation as a noise control measure. These are “median” noise barriers. The incoherent line source model is used to assess the performance of median barriers in reducing noise when installed alone and also with associated roadside barriers. A sound absorbent median noise barrier 1m in height produced consistent values of insertion loss of between 1 and 2dB over the range of receiver positions and ground conditions considered. When the median barrier was used in conjunction with a roadside barrier it produced a consistent improvement in insertion loss of between 1 and 2 dB over the range of conditions considered.  相似文献   

12.
Ning Han  Xiaojun Qiu 《Applied Acoustics》2007,68(10):1297-1306
Active noise control systems have been applied to increase the insertion loss of noise barriers where the squared sound pressure or the total acoustic energy density is used as the cost function in previous works. The absolute value of the mean active sound intensity is chosen as the cost function to obtain extra sound insertion loss in the dark area of a hybrid active noise barrier system in this note. The strategy of minimizing the near-field sound intensity at discrete locations along the edge of the passive barrier is shown to be able to provide better far-field noise reduction than that of minimizing the squared sound pressure control. Both numerical simulations and off-line experiments are carried out with a three-channel demonstration system, where the locations of the secondary sources and the error sensors are optimized and comparisons are made between the extra sound pressure attenuation of the sound intensity control and that of the squared sound pressure control.  相似文献   

13.
Although a considerable amount of research has been undertaken regarding the performance of T-profile noise barriers, the information available to the practicing highway engineer is confusing. For example, there is a widespread belief that the performance of a top edge, expressed as an insertion loss relative to that of the simple barrier on which it is mounted, is constant, irrespective of the relative locations of the source, barrier and receiver. In order to clarify the situation an investigation has been undertaken, using computer modelling, of the performance afforded by highway noise barriers with T-profile tops with different acoustic treatments. The relative insertion loss was found to increase systematically with increasing top width. Although the relative insertion loss afforded by a reflective T-top is small, significant attenuation can be obtained with an absorptive top. Examination of the effect on performance of the locations of source and receiver relative to that of the noise barrier indicated that, for source and receiver locations typical of those experienced for highway noise barriers, the relative insertion loss for a given width of T-top was a function of (a) the path difference between sound travelling to the receiver via the barrier top and direct sound from the source to the receiver and (b) the barrier height. Plots of relative insertion loss versus the path difference, normalised with respect to barrier heights, for a range of T-top widths and absorbent treatment, resulted in a collapse of data around well defined trend lines which offer the potential of being developed into a prediction method.  相似文献   

14.
《Current Applied Physics》2010,10(2):381-385
This paper described a method for estimating the acoustic characteristics of composite materials at oblique incidence of sound waves. Composite materials are used as acoustic windows of SONAR to protect the internal sensors and electronic parts from water. In this study the composite material of glass reinforced plastic and polyurethane was used as the specimen. As the acoustic characteristics the velocities and attenuation coefficients of sound waves through the composite material were measured in the high frequency range. The insertion loss was also measured as a function of incident angle at 200 and 76 kHz, respectively. The attenuation coefficients in the low frequency range were estimated by interpolating the measured attenuation in the high frequency range with power-law form fitting. A four-medium layer model was proposed to estimate the insertion loss of composite materials at oblique incidence of sound waves in the low frequency range. The four-medium layer model well described the experimentally measured insertion loss at the high frequency range. It suggests that the insertion loss of the composite materials can be well estimated as a function of incident angle in the low frequency range.  相似文献   

15.
A modular design optimization method for acoustic metamaterial cells is proposed, which can ensure satisfying the targeted noise attenuation by using only the objective function of an arbitrary noise source and the constraints of the application at hand. The core algorithm is a fusion of the generalized particle swarm algorithm and wave finite element method specialized for structural and targeted optimization of metamaterials. The output is the optimized metamaterial cell and its sound barrier structure. The desired noise reduction performance is verified via acoustic testing of a 3D-printed prototype. The simulation and experimental results of test cases show that the designed acoustic metamaterial can perfectly block the target noise band and have significant advantages in terms of design efficiency, light weight, and noise attenuation.  相似文献   

16.
There is no accurate analytical approach for the acoustic performance prediction of Helmholtz resonator with conical neck,which has broad band acoustic attenuation performance in the low frequency range.To predict the acoustic performance of the resonator accurately,a general theory model based on the one-dimensional analysis approach with acoustic length corrections is developed.The segmentation method is used to calculate the acoustic parameters for sound propagation in conical tubes.And then,an approximate formula is deduced to give accurate correction lengths for conical tubes with difierent geometries.The deviations of the resonance frequency between the transmission loss results obtained by the general theory with acoustic lengths correction and the results from the finite element method and experiments are less than 2 Hz,which is much better than the results from one-dimensional approach without corrections.The results show that the method of acoustic length correction for the conical neck greatly improved the accuracy of the one-dimensional analysis approach,and it will be quick and accurate to predict the sound attenuation property of Helmholtz resonator with conical neck.  相似文献   

17.
锥形颈部赫姆霍兹共振器声学性能预测   总被引:1,自引:0,他引:1  
锥形颈部赫姆霍兹共振器具有更好的低频消声能力,而其声学性能尚无准确解析预测方法。为了研究其声学性能,在声学长度修正的基础上,利用一维解析方法建立了用于计算传递损失的一维修正模型。运用分割法计算锥形管内部声传播的声学长度修正,并给出了声学修正长度计算公式。采用得到的锥形管声学修正长度和一维修正模型,计算出的锥形颈部赫姆霍兹共振器频率与有限元及实验测试结果偏差在2 Hz以内,明显优于不修正的计算结果。表明锥形管声学长度修正法提高了一维解析方法的精度,从而可以快捷准确的预测锥形颈部赫姆霍兹共振器的消声性能。   相似文献   

18.
This paper describes the noise shielding efficiency of barriers with an acoustic device mounted on their top edge for reducing sound diffraction. Diffraction behind the edge-modified barrier is investigated by scale model experiments in which the positions of a source and a receiver are aligned along a circular arc around the barrier top. The result indicates that the acoustic efficiency of the edge device is a function of the angles of the source and receiver and independent of their radii. Based on this finding, a novel procedure for determining the efficiency of manufactured edge devices is established. This procedure is very beneficial for estimating the edge device efficiency by eliminating ground and meteorological effects. The measured efficiency of the device will be quite useful for the prediction of noise propagation behind the edge-modified barriers.  相似文献   

19.
The focus of this paper is on the problem of finite impedances on both ground and barrier. Using a boundary element approach the surface treatment of the barrier and finite parts of the ground have been optimised to yield maximum insertion loss at multiple frequencies simultaneously. A 1 m high T-shaped barrier optimised in this way gives up to 8 dB higher insertion loss than a rigid barrier of equal shape. Optimisation of the acoustical properties of the ground below the source as well as those of the barrier improves the insertion loss dramatically for all receiver heights. The ground close to the source is the part of the ground that influences the insertion loss most, and in such a way that the radiation properties of the source are altered, and the radiated sound power is reduced. Having an optimised admittance only on the ground close to the barrier gives only a minor effect. A barrier-ground combination with specialised treatment on the ground close to the source and on the barrier top gives an increase in insertion loss that is comparable to the optimised results. The main conclusion of this paper is that specialised surface treatments provide largest effect if they are used on the ground surface.  相似文献   

20.
Membrane-type acoustic metamaterials have been recently shown to exhibit good performance of sound attenuation in a low frequency range. An analytical approach for the fast calculation of sound transmission loss of the membrane-type acoustic metamaterials is presented here. The discussion indicate that the first transmission loss valley and the transmission loss peak depend strongly on the attaching mass, while the second transmission loss valley is mainly influenced by the membrane properties. The effects of membrane tension and mass position on the transmission loss and characteristic frequencies are also discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号