首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For studying the interference between two Bose-Einstein condensates we introduce the atomic coherentstate (ACS) in the Schwinger bosonic realization along with the phase operator to directly calculate the interference pattern with steady relative phase cos Ф. Eigenstates of the density operator of condensates are classified as ACS is also demonstrated. The entangled state representation is used in some calculations.  相似文献   

2.
We propose an experimentally feasible teleportation scheme with three-atom W-class state, which was first proposed by Agrawal and Pati [P. Agrawal and A. Pati, Phys. Rev. A 74 (2006) 062320 ], in cavity QED. In this scheme atoms interact simultaneously with a nonresonant cavity and there is no energy exchange between the atoms and the cavity. Thus it is insensitive to the cavity decay, which is of importance in view of experiment.  相似文献   

3.
A scheme is presented for the generation of entangled states for two atoms trapped in two distant cavities. In the scheme each atom is resonantly coupled with the respective cavity mode and driven by a strong classical field. The detection of a photon decaying from the cavities and passing through a beam-splitter collapses the atoms to an entangled state. The required atom-field interaction time is very short and thus the decoherence effect is suppressed. Our scheme is within the reach of presently available cavity QED techniques.  相似文献   

4.
In the present paper, we investigate the instability, adiabaticity, and controlling effects of external fields for a dark state in a homonuclear atom-tetramer conversion that is implemented by a generalized stimulated Raman adiabatic passage. We analytically obtain the regions for the appearance of dynamical instability and study the adiabatic evolution by a newly defined adiabatic fidelity. Moreover, the effects of the external field parameters and the spontaneous emissions on the conversion efficiency are also investigated.  相似文献   

5.
At low temperatures the configurational phase space of a macroscopic complex system (e.g., a spin-glass) of N - 10^23 interacting particles may split into an exponential number Ωs - exp(const × N) of ergodic sub-spaces (thermodynamic states). It is usually assumed that the equilibrium collective behavior of such a system is determined by its ground thermodynamic states of the minimal free-energy density, and that the equilibrium free energies follow the distribution of exponentied decay. But actually for some complex systems, the equilibrium free-energy values may follow a Gaussian distribution within an intermediate temperature range, and consequently their equilibrium properties are contributed by excited thermodynamic states. Based on this analysis, the re-weighting parameter y in the cavity approach of spin-glasses is easily understood. Depending on the free-energy distribution, the optimal y can either be equal to or be strictly less than the inverse temperature β.  相似文献   

6.
Considering the adiabatical approximation and the large detuning condition, we give the effective Hamiltonian of a ladder-type three levels atom interacting with a bimodal cavity field. If two identical three-level atoms are sent through the cavity one by one, a two-atom entangled state can be generated. With the choice of the appropriate interaction time, a maximally entangled state of two atoms can be obtained if decoherence effect is ignored. Moreover, we discuss the effect of cavity decay on four physical quantities including atomic population probability, residual entanglement of the first atom and the cavity field, concurrence between the two atoms, and fidelity for generating atomic EPR state, all of which decrease with the increase of cavity decay when the other parameters are fixed.  相似文献   

7.
We propose a scheme to generate a three-qubit three-IeveI singlet state in cavity QED, by placing three A-type SQUIDs in a single mode cavity. In this scheme, we make use of the interaction between the SQUIDs and cavity filed, and the classical pulses. The cavity fields are in vacuum state during the whole operation processes of creating the entanglement, and there is no quantum information transformation between the SQUIDs and cavity fields. Because of the advantage of the SQUID-cavity system, the quality factor of the cavity is greatly relaxed.  相似文献   

8.
We investigate the exact solutions of one-dimensional (1D) time-independent Gross-Pitaevskii equation (GPE), which governs a Bose-Einstein condensate (BEC) in the magnetic waveguide with a square-Sech potential. Both the bound state and transmission state are found and the corresponding spatial configurations and transport properties of BEC are analyzed. It is shown that the well-known absolute transmission of the linear system can occur in the considered nonlinear system.  相似文献   

9.
We investigate controlled teleportation ofa qubit via a GHZ state with the influence of phase damping in the Bloch sphere representation. We use the average trace distance to describe how close the output state is to the input state to be teleported. Our results show that the average trace distance is a function of decoherence rates and angles of the analyzer performed by the controller in the single-particle projective measurement. Moreover, for a fixed value of the decoherence rate, one can adjust the analyzer angle to achieve the optimal average trace distance.  相似文献   

10.
Although the multi-level structure of superconducting qubits may result in calculation errors, it can be rationally used to effectively improve the speed of gate operations. Utilizing a current-biased Josephson junction (A-type rf-SQUID) as a tunable coupler for superconducting transmission line resonators (TLRs), under the large detuning condition, we demonstrate the controllable generation of entangled coherent states in circuit quantum electrodynamics (circuit QED). The coupling between the TLRs and the qubit can be effectively regulated by an external bias current or coupling capacitor. Further investigations indicate that the maximum entangled state can be obtained through measuring the excited state of the superconducting qubits. Then, the influence of the TLR [tecay on the prepared entangled states is analyzed.  相似文献   

11.
We show that the Susskind-Glogower phase state is a limiting case of a kind of SU(1,1) coherent states. By analogy, based on the bipartite entangled state representation (ESR) we demonstrate that an appropriate SU(1,1) coherent state composed of the two-mode unitary phase operator e^i also leads to a new phase state in two-mode Fock space, e^i is diagonalized in the ESR.  相似文献   

12.
We propose an alternative scheme for generation of atomic Schrodinger cat states in an optical cavity. In the scheme the atoms are always populated in the two ground states and the cavity remains in the vacuum state. Therefore, the scheme is insensitive to the atomic spontaneous emission and cavity decay. The scheme may be generalized to the deterministic generation of entangled coherent states for two atomic samples. In contrast with the previously proposed schemes of [Commun. Theor. Phys. 40 (2003) 103 and Chin. our scheme is greatly shortened and thus the deeoherence can Phys. B 18 (2009) 1045], the required interaction time in be effectively suppressed.  相似文献   

13.
For the matrix product system of a one-dimensional spin-1/2 chain, we present a new model of quantum2 phase transitions and find that in the thermodynamic limit, both sides of the critical point are respectively described by phases |Ψa 〉=|1··· 1 representing all particles spin up and |Ψb 〉=|0··· 0 representing all particles spin down, while the phase transition point is an isolated intermediate-coupling point where√ the two phases coexist equally, which is2 described by the so-called N-qubit maximally entangled GHZ state |Ψpt =√2/2(|1··· 1 +|0··· 0). At the critical point,2the physical quantities including the entanglement are not discontinuous and the matrix product system has longrange correlation and N-qubit maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of potential directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-qubit maximal entanglement.  相似文献   

14.
We present a new model of quantum phase transitions in matrix product systems of one-dimensional spin-1 chains and study the phases coexistence phenomenon. We find that in the thermodynamic limit the proposed system has three different quantum phases and by adjusting the control parameters we are able to realize any phase, any two phases equal coexistence and the three phases equM coexistence. At every critical point the physical quantities including the entanglement are not discontinuous and the matrix product system has long-range correlation and N-spin maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of certain directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-spin maximal entanglement.  相似文献   

15.
We propose schemes to prepare n-atom Greenberger-Horn-Zeilinger (GHZ) state via two-sided cavities interacting with single-photon pulses, and achieve quantum state transfer (QST) from one atom to another atom. Entanglement particle pair and the control of coupling between qu bits are of no need in the QST process. Some practical quantum noises only decrease the success probabilities of the schemes but have no influence on the fidelity of prepared state. In addition, the success probabilities of our schemes are close to unity in the ideal case.  相似文献   

16.
We propose a scheme for multiparty-controlled remote preparation of the two-particle state by using two non-maximally Greenberger-Horne-Zeilinger states as quantum channel. Our scheme consists of one sender and n remote receivers. It will be shown that the sender can help either one of the n receivers to remotely preparation the original state with the appropriate probability, and the sender Alice's two-particle projective measurement and the controllers' single-particle product meazurements are needed. We also obtained the probability of the successful remote state preparation.  相似文献   

17.
We present a two-step deterministic remote state preparation protocol for an arbitrary qubit with the aid of a three-particle Greenberger-Horne-Zeilinger state. Generalization of this protocol for higher-dimensional Hilbert space systems among three parties is also given. We show that only single-particle yon Neumann measurements, local operations, and classical communication are necessary. Moreover, since the overall information of the quantum state can be divided into two different pieces, which may be at different locations, this protocol may be useful in the quantum information field.  相似文献   

18.
Influence of Noises on Remote State Preparation Using GHZ State   总被引:1,自引:0,他引:1  
Using a quantum channel consisting of a GHZ state exposed to noisy environment, we investigate how to remotely prepare an entangled state and a qubit state, respectively. By solving the master equation in the Lindblad form, the influence of the various types of noises on the GHZ state is first discussed. Then we use the fidelity to describe how close the remotely prepared state and the initial state are. Our results show that the fidelity is a function of the decoherence rates and the angles of the initial state. It is found that for each of the two RSP schemes, the influence of the noise acting simultaneously in x, y, and z directions on the average fidelity is the strongest while the influence of the noise acting in x or z direction on the average fidelity is relatively weaker.  相似文献   

19.
We firstly present a novel scheme for deterministic joint remote state preparation of an arbitrary five-qubit Brown state using four Greenberg–Horme–Zeilinger(GHZ)entangled states as the quantum channel.The success probability of this scheme is up to 1,which is superior to the existing ones.Moreover,the scheme is extended to the generalized case where three-qubit and four-qubit non-maximally entangled states are taken as the quantum channel.We simultaneously employ two common methods to reconstruct the desired state.By comparing these two methods,we draw a conclusion that the first is superior to the second-optimal positive operator-valued measure only taking into account the number of auxiliary particles and the success probability.  相似文献   

20.
Based on the Einstein, Podolsky, and Rosen (EPR) entangled state representation, this paper introduces the wave function for the squeezed atomic coherent state (SACS), which turns out to be just proportional to a single-variable ordinary Hermite polynomial of order 2j. As important applications of the wave function, the Wigner function of the SACS and its marginal distribution are obtained and the eigenproblems of some Hamiltonians for the generalized angular momentum system are solved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号