首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于自衍射效应的自参考光谱干涉方法的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李方家  刘军  李儒新 《物理学报》2013,62(6):64211-064211
研究一种基于非线性透明光学介质中的自衍射和自参考光谱干涉的新方法来进行飞秒激光脉冲测量. 实验中, 基于此新方法设计一种简单装置, 对800 nm 中心波长, 约40 fs 近无啁啾飞秒激光脉冲进行测量, 并与自参考光谱相干电场重建法测量结果进行比较, 得到了一致的结果. 此新方法与相应的装置结构简单, 可以对深紫外到中红外光谱范围的飞秒脉冲进行测量. 关键词: 飞秒激光脉冲 自参考光谱干涉 自衍射 脉冲测量  相似文献   

2.
Huang F  Yang W  Warren WS 《Optics letters》2001,26(6):382-384
We introduce a new variant of spectral interferometry, using spectrally dispersed ultrafast laser pulses and quadrature detection to measure optical thickness variations related to surface structure. We can resolve surface features with depths of 3 mm to 25 nm, using a lateral resolution of ~100mum . Quadrature detection gives a larger dynamic range and solves the sign ambiguity problem. This method has potential applications in device manufacture, optical communications, and error compensation in pulse shaping.  相似文献   

3.
We demonstrate a single-shot measurement technique based on spectral interferometry (SI) for measuring the complete intensity and phase vs. time of extremely complex ultrashort laser pulses. Ordinarily, such a method would require an extremely-high-resolution spectrometer, but, by temporally interleaving many SI measurements, each using a different reference-pulse delay, our method overcomes this need. It involves introducing a transverse time delay into the reference pulse by tilting its pulse front transversely to the spectrometer dispersion plane. The tilted reference pulse then gates the unknown pulse by interfering with it at the image plane of a low-resolution imaging spectrometer, yielding an effective increase in the delay range and spectral resolution—by a factor of 30 in our proof-of-principle implementation. Our device achieved a temporal resolution of ~ 130 fs and a temporal range of 120 ps. This simple device has the potential to measure even longer and more complex pulses.  相似文献   

4.
石俊凯  王国名  黎尧  高书苑  刘立拓  周维虎 《物理学报》2019,68(6):64206-064206
构建了基于损耗非对称非线性光学环镜的8字腔掺铒光纤锁模激光器,并讨论了腔内滤波带宽对腔内脉冲演化和激光器输出特性的影响.在非线性光学环镜中引入双向输出耦合器,耦合器和传输光纤位置的不对称产生非互易性,实现锁模运转.利用自制的可调谐滤波器实验研究了滤波带宽对激光器的影响.当滤波带宽为2.1 nm时,腔内脉冲的演化过程受滤波和孤子效应的共同作用,激光器顺时针和逆时针输出脉冲半高全宽分别为583.7fs和2.94 ps.随着滤波带宽增大,滤波的作用逐渐减弱,激光器两路输出脉冲参数逐渐接近,并接近傅里叶变换极限脉冲.当滤波带宽较大时,腔内脉冲的演化过程受增益谱和孤子效应的共同作用,激光器顺时针和逆时针输出脉冲均为变换极限脉冲,半高全宽约为440 fs.通过调节滤波器中心波长实现了对激光器输出脉冲光谱的连续调谐,调节范围大于30 nm.  相似文献   

5.
超短激光脉冲调制上转换放大   总被引:1,自引:0,他引:1       下载免费PDF全文
吴昆  吴健  徐晗  曾和平 《物理学报》2005,54(8):3749-3756
在超短激光脉冲倍频过程中,由于调制不稳定性而产生多色圆锥辐射. 在多色圆锥辐射的任 意方向上同步注入一束宽带种子光,可以得到相应频率的调制上转换放大. 放大的光脉冲的 中心波长在500 nm时单脉冲能量最大可至150 μJ并且具有60 nm的频谱宽度. 通过改变种子 光的入射角度而实现上转换放大中心波长的连续调谐,范围约为290 nm. 关键词: 调制上转换放大 调制不稳定性 多色圆锥辐射  相似文献   

6.
张攀政  范薇  汪小超  林尊琪 《物理学报》2011,60(2):24206-024206
讨论了利用光谱滤波器实现自启动的被动锁模掺Yb3+光纤环形激光器的锁模机理,并研制出全光纤结构超短脉冲掺Yb3+光纤环形激光器.使用980 nm二极管激光器作为抽运源,高掺杂浓度掺Yb3+光纤作为增益介质.在净群速度色散为正的环形腔中加入光谱滤波器,抑制Yb3+离子在1030 nm强发射峰的同时,通过对啁啾脉冲的光谱滤波实现脉冲压缩.光谱滤波器与光纤非线性偏振旋转效应相结合,实现了激光器在1053 nm可自启动、十分稳定的锁模运转.激光器锁模阈值功率300 mW,平均斜率效率18.3%,最大输出功率53.07 mW,对应最大输出脉冲能量3.2 nJ.锁模光脉冲中心波长1053.6 nm,3 dB带宽10.84 nm,重复频率16.45 MHz.锁模脉冲宽度为皮秒量级,经腔外光栅对压缩至188 fs. 关键词: 3+光纤激光器')" href="#">掺Yb3+光纤激光器 自启动锁模 全光纤  相似文献   

7.
Experiments and numerical simulations are used to study non-phasematched single-mode third harmonic generation occurring simultaneously with fs pulse spectral broadening in highly nonlinear fibre. Pump pulses around 100 fs at 1560 nm injected into sub-5 cm lengths of commercially-available highly nonlinear fibre are observed to undergo spectral broadening spanning over 700 nm at the -30 dB level, and to simultaneously generate third harmonic radiation around 520 nm. Simulations based on a generalized nonlinear envelope equation are shown to well reproduce the spectral structure of the broadened pump pulses and the generated third harmonic signal. PACS 42.65.-k; 42.81.Dp  相似文献   

8.
We demonstrate the generation of sub-6-fs pulses centered at 405 nm by frequency doubling of 8.6-fs Ti:sapphire laser pulses. The frequency doubling is carried out in a nonlinearly chirped quasi-phase-matching grating fabricated in a lithium tantalate substrate. This device simultaneously provides frequency conversion and pulse compression of the positively prechirped fundamental pulses. The second-harmonic pulses are characterized in a cross-correlation setup, and their pulse shapes are retrieved by two iterative phase-reconstruction algorithms. The generated second-harmonic spectrum spans a bandwidth of 220 THz. To our knowledge, these are the shortest pulses ever generated in the blue spectral region.  相似文献   

9.
Intense ultrashort laser pulses with stabilized carrier-envelope phase (CEP) are generated at 800 nm by using multi-stage collinear and non-collinear optical parametric amplifiers (OPAs). The first-stage collinear OPA is directly pumped by the fundamental-wave pulses and tuned to generate idler pulses at 1600 nm, which are further amplified by a second-stage collinear OPA, and then frequency-doubled to generate CEP-stabilized pulses at 800 nm. A non-collinear OPA is used to amplify the CEP-stabilized pulses at 800 nm. The combination of different OPAs can generate and amplify CEP-stabilized pulses at 800 nm without any detrimental influence from the fundamental-wave pulses. The CEP stabilization is verified with a simple and robust spectral interference setup. The stable interference pattern is measured for every single pulse and compared with the unstable pattern from pulses of random CEP. PACS 42.65.Re; 42.65.Yj; 42.25.Kb  相似文献   

10.
We demonstrate a simple scheme for a wide spectral range, third-order autocorrelator based on ultrafast nonlinear Kerr-type refraction. The technique was successfully used to characterize high-energy ultrashort pulses at 1550 and 1300 nm, where the pulse's shape and width are two of the most critical parameters. Because of its simplicity, this technique is also a powerful tool for the optimization of high-power chirped-pulse amplified laser systems, in which slight misalignment of the stretcher-compressor gratings can lead to spatiotemporal pulse distortions. In addition, it can be extended to low-power mode-locked oscillators.  相似文献   

11.
A simple, compact, and robust implementation of spectral shearing interferometry using a single nonlinear crystal for both ancilla generation and upconversion is demonstrated. The device is capable of accurate characterization of femtosecond laser pulses over the 740-900 nm range with a KDP crystal.  相似文献   

12.
Diffraction and transform-limited picosecond tunable pulses are generated from Spectro-temporal-Selection (STS) dye lasers by using a new extra-cavity filter. This filter is based on a grazing-incident grating and arranged in the configuration of a folded dispersive delay line. Thus, it provides both high spectral selectivity and controllable temporal compensation for elimination of pulse broadening. Direct production of diffraction- and transform-limited picosecond dye laser (10 µJ, 50 ps) pulses spectrally adjustable between 398 and 702 nm is demonstrated in a compact device, with 8 ns pump pulses from a nanosecond nitrogen laser.  相似文献   

13.
Spatial and spectral control, using an intracavity capillary and a slit, is applied to improve the output pulse quality of a Ti:sapphire laser. Satellite-free 10-fs optical pulses with a smooth spectral and spatial profile have been generated. Employing a root-mean-square formalism for pulse characterization, spatial, spectral and temporal intensity distributions are analyzed for laser pulses with a duration as short as three to four optical cycles. Received: 11 June 2001 / Published online: 18 July 2001  相似文献   

14.
Xi-Hang Yang 《中国物理 B》2022,31(9):94206-094206
We present a cascaded nonlinear spectral broadening scheme for Nd-doped lasers, featuring with long pulse duration and high average power. This scheme is based on two multi-pass cells (MPCs) and one multiple-plate supercontinuum generation (MPSG), and the numerical investigation is driven by a home-made Nd-doped fiber laser with 12 ps pulse duration, 50 kHz repetition rate and 100 W average power. The MPC-based first two stages allow us to broaden the pulse spectrum to 4 nm and 43 nm respectively, and subsequently, the MPSG-based third stage allows us to reach 235 nm spectral bandwidth. This broadened spectrum can support a Fourier-transfer-limited pulse duration of 9.8 fs, which is shorter than three optical cycles. To the best of our knowledge, it is the first time to demonstrate the possibility of few-cycle pulses generation based on the 10 ps level Nd-doped lasers. Such few-cycle and high average power laser sources should be attractive and prospective, benefiting from the characteristics of structure compact, low-cost and flexibility.  相似文献   

15.
We propose and experimentally demonstrate a method for fiber dispersion measurement based on the modulation of laser pulses stretched by the fiber under test. The measured spectrum of the modulated pulses is the result of the interference between the stretched pulse spectra shifted by the modulation harmonics. The interference pattern is processed as in Fourier transform spectral interferometry. Unlike to conventional spectral interferometry, environmental conditions do not affect the interferogram due to the lack of any interferometer; additionally, large dispersions can be characterized by the method proposed. Its high accuracy is demonstrated in experimental comparison with the widely used phase shift technique.  相似文献   

16.
Femtosecond pulses continuously tunable in the vacuum ultraviolet (VUV) spectral range between 168 and 182 nm were generated using four-wave frequency mixing in an argon-filled capillary. The pulse energy reached 200 nJ at a pump-to-VUV conversion efficiency of 1%. The bandwidth at 181 nm was up to 27 THz corresponding to a transform limited duration of 17 fs. The upper limit in the shortest measured pulse duration was 75 fs.  相似文献   

17.
We demonstrate the generation of waveform-controlled laser pulses with 1?mJ pulse energy and a full-width-half-maximum duration of ~4 fs, therefore lasting less than two cycles of the electric field oscillating at their carrier frequency. The laser source is carrier-envelope-phase stabilized and used as the backbone of a kHz repetition rate source of high-harmonic continua with unprecedented flux at photon energies between 100 and 200?eV (corresponding to a wavelength range between 12-6?nm respectively). In combination we use these tools for the complete temporal characterization of the laser pulses via attosecond streaking spectroscopy.  相似文献   

18.
Chirped ultrashort light pulses offer new options for coherent nonlinear spectroscopy and microscopy. We show here that the temporal resolution of spectroscopy and microscopy based on coherent anti-Stokes Raman scattering (CARS) can be smoothly tuned within a broad range, with upper and lower bounds of this range controlled by the pump and probe pulse durations. The spectral resolution of CARS spectroscopy and microscopy is analyzed as a function of the duration and chirp of the pump pulses. Pulses with a periodic phase modulation can provide the limiting spectral resolution of the CARS technique, corresponding to the lower bound of uncertainty in spectral measurements, dictated by the uncertainty principle.  相似文献   

19.
We demonstrate near-transform-limited pulse generation through spectral compression arising from nonlinear propagation of negatively chirped pulses in optical fiber. The output pulse intensity and phase were quantified by use of second-harmonic generation frequency-resolved optical gating. Spectral compression from 8.4 to 2.4 nm was obtained. Furthermore, the phase of the spectrally compressed pulse was found to be constant over the spectral and temporal envelopes, which is indicative of a transform-limited pulse. Good agreement was found between the experimental results and numerical pulse-propagation studies.  相似文献   

20.
We show that the complete characterization of arbitrarily short isolated attosecond x-ray pulses can be achieved by applying spectral shearing interferometry to photoelectron wave packets. These wave packets are coherently produced through the photoionization of atoms by two time-delayed replicas of the x-ray pulse, and are shifted in energy with respect to each other by simultaneously applying a strong laser field. The x-ray pulse is reconstructed with the algorithm developed for optical pulses, which requires no knowledge of ionization physics. Using a 800-nm shearing field, x-ray pulses shorter than approximately 400 asec can be fully characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号