首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
A chiral metasurface is proposed to realize a tri-band polarization angle insensitive cross-polarization converter. The unit cell of the chiral metamaterial is composed by four twisted anisotropic structure pairs in four-fold rotation symmetry.The simulation results show that this device can work at 9.824 GHz, 11.39 GHz, and 13.37 GHz with low loss and a high polarization conversion ratio(PCR) of more than 99%. The proposed design can transmit the co-polarization wave at14.215 GHz, like a frequency selective surface. The study of the current and electric fields distributions indicates that the cross-polarization transmission is due to electric dipole coupling.  相似文献   

2.
We report a theoretic study on modulating the spin polarization of charge current in a mesoscopic fourterminal device of cross structure by using the inverse spin hall effect. The scattering region of device is a two-dimensional electron gas (2DEG) with Rashba spin orbital interaction (RSOI), one of lead is ferromagnetic metal and other three leads are spin-degenerate normal metals. By using Landauer-Biittiker formalism, we found that when a longitudinal charge current flows through 2DEG scattering region from FM lead by external bias, the transverse current can be either a pure spin current or full-polarized charge current due to the combined effect of spin hall effect and its inverse process, and the polarization of this transverse current can be easily controlled by several device parameters such as the Fermi energy, ferromagnetic magnetization, and the RSOI constant. Our method may pave a new way to control the spin polarization of a charge current.  相似文献   

3.
余欣欣  谢月娥  欧阳滔  陈元平 《中国物理 B》2012,21(10):107202-107202
By the Green’s function method,we investigate spin transport properties of a zigzag graphene nanoribbon superlattice(ZGNS) under a ferromagnetic insulator and edge effect.The exchange splitting induced by the ferromagnetic insulator eliminates the spin degeneracy,which leads to spin-polarized transport in structure.Spin-dependent minibands and minigaps are exhibited in the conductance profile near the Fermi energy.The location and width of the miniband are associated with the geometry of the ZGNS.In the optimal structure,the spin-up and spin-down minibands can be separated completely near the Fermi energy.Therefore,a wide,perfect spin polarization with clear stepwise pattern is observed,i.e.,the perfect spin-polarized transport can be tuned from spin up to spin down by varying the electron energy.  相似文献   

4.
王宗鹏  邓娅  孙连峰 《中国物理 B》2017,26(11):114101-114101
We propose a low-cost plasmonic metasurface integrated with single-layer graphene for dynamic modulation of midinfrared light. The plasmonic metasurface is composed of an array of split magnetic resonators(MRs) where a nano slit is included. Extraordinary optical transmission(EOT) through the deep subwavelength slit is observed by excitation of magnetic plasmons in the split MRs. Furthermore, the introduction of the slit provides strongly enhanced fields around the graphene layer, leading to a large tuning effect on the EOT by changing the Fermi energy of the graphene. The proposed metasurface can be utilized as an optical modulator with a broad modulation width(15 μm) or an optical switch with a high on/off ratio( 100). Meanwhile, the overall thickness of the metasurface is 430 nm, which is tens of times smaller than the operating wavelength. This work may have potential applications in mid-infrared optoelectrical devices and give insights into reconfigurable flat optics and optoelectronics.  相似文献   

5.
The adsorption of hydrogen molecules on titanium-decorated (Ti-decorated) single-layer and bilayer graphenes is studied using density functional theory (DFT) with the relativistic effect. Both the local density approximation (LDA) and the generalized gradient approximation (GGA) are used for obtaining the region of the adsorption energy of H2 molecules on Ti-decorated graphene. We find that a graphene layer with titanium (Ti) atoms adsorbed on both sides can store hydrogen up to 9.51 wt% with average adsorption energy in a range from -0.170 eV to 0.518 eV. Based on the adsorption energy criterion, we find that chemisorption is predominant for H2 molecules when the concentration of H2 molecules absorbed is low while physisorption is predominant when the concentration is high. The computation results for the bilayer graphene decorated with Ti atoms show that the lower carbon layer makes no contribution to hydrogen adsorption.  相似文献   

6.
邓诗贤  梁世东 《中国物理 B》2012,21(4):47306-047306
The conductances of two typical metallic graphene nanoribbons with one and two defects are studied using the tight binding model with the surface Green’s function method. The weak scattering impurities, U ~ 1 eV, induce a dip in the conductance near the Fermi energy for the narrow zigzag graphene nanoribbons. As the impurity scattering strength increases, the conductance behavior at the Fermi energy becomes more complicated and depends on the impurity location, the AA and AB sites. The impurity effect then becomes weak and vanishes with the increase in the width of the zigzag graphene nanoribbons (150 nm). For the narrow armchair graphene nanoribbons, the conductance at the Fermi energy is suppressed by the impurities and becomes zero with the increase in impurity scattering strength, U > 100 eV, for two impurities at the AA sites, but becomes constant for the two impurities at the AB sites. As the width of the graphene nanoribbons increases, the impurity effect on the conductance at the Fermi energy depends sensitively on the vacancy location at the AA or AB sites.  相似文献   

7.
吴家梁  林宝勤  达新宇  吴凯 《中国物理 B》2017,26(9):94201-094201
In this paper, a linear-to-circular polarization converter using a three-layer frequency selective surface based on Ishaped circular structure resonant is presented and investigated. Numerical simulations exhibit that when the normal ypolarized waves impinge on this device propagating towards +z direction, the two orthogonal components of the transmitted waves have a 90° phase difference as well as the nearly equal amplitudes at the resonant frequency of 7.04 GHz, which means that the left-hand circular polarization is realized in transmission. For validating the proposed design, a prototype which consists of 25 × 25 elements has been designed, manufactured and measured. The measured results are in good agreement with the simulated ones, showing that the polarization conversion transmission is over-3 dB in the frequency range of 5.22–8.08 GHz and the axial ratio is below 3 dB from 5.86 GHz to 7.34 GHz.  相似文献   

8.
A structurally stable two-dimensional carbon allotrope principles calculations. This allotrope can be formed of graphene is studied theoretically based on the first- by inserting acetylene and diacetylene fragments into β-graphyne. The calculations on structure and electronic energy spectra show that the carbon Kagome lattice is a structurally stable semimetal with the Dirac cones below the Fermi surface, in contrast to the Dirac points at the Fermi surface in intrinsic graphene.  相似文献   

9.
A new London-Eyring-Polanyi-Sato potential energy surface is employed in this work to study the stereo properties of the O(3P)+CH4 →H+CH3O reaction in its rovibrationally ground state using the quasiclassical trajectory method(QCT).Our calculations are performed at a range of collision energies,Ec=1.5eV~3.5eV,and the excitation function obtained by the QCT method accords well with the experimental data.The product rotational polarization is calculated,and the product shows a strong rotational polarization in the centre-of-mass coordinate system.The orientation of the product rotational angular momenta is sensitive to the increase in collision energy,and the alignment of the product rotational angular momenta shows some of the properties of the heavy heavy-light mass combination reactions.In the isotopic substituted reaction study,when the H atoms in methane are replaced by D atoms,the rotational polarization is obviously reduced.The polarization-dependent differential cross section is also studied by this QCT calculation to provide detailed information about the rotational alignment and orientation of the product.  相似文献   

10.
伞晓娇  韩柏  赵景庚 《中国物理 B》2016,25(3):37305-037305
We have studied the structural and optical properties of semi-fluorinated bilayer graphene using density functional theory. When the interlayer distance is 1.62 , the two graphene layers in AA stacking can form strong chemical bonds.Under an in-plane stress of 6.8 GPa, this semi-fluorinated bilayer graphene becomes the energy minimum. Our calculations indicate that the semi-fluorinated bilayer graphene with the AA stacking sequence and rectangular fluorinated configuration is a nonmagnetic semiconductor(direct gap of 3.46 e V). The electronic behavior at the vicinity of the Fermi level is mainly contributed by the p electrons of carbon atoms forming C=C double bonds. We compare the optical properties of the semifluorinated bilayer graphene with those of bilayer graphene stacked in the AA sequence and find that the semi-fluorinated bilayer graphene is anisotropic for the polarization vector on the basal plane of graphene and a red shift occurs in the [010]polarization, which makes the peak at the low-frequency region located within visible light. This investigation is useful to design polarization-dependence optoelectronic devices.  相似文献   

11.
Based on the Anderson impurity model and self-consistent approach, we investigate the condition for the screening of a local magnetic moment by electrons in graphene and the influence of the moment on electronic properties of the system. The results of numerical calculations carried out on a finite sheet of graphene show that when the Fermi energy is above the single occupancy energy and below the double occupancy energy of the local impurity, a magnetic state is possible. A phase diagram in a parameter space spanned by the Coulomb energy U and the Fermi energy is obtained to distinguish the parameter regions for the magnetic and nonmagnetic states of the impurity. We find that the combined effect of the impurity and finite size effect results in a large charge density near the edges of the finite graphene sheet. The density of states exhibits a peak at the Dirac point which is caused by the appearance of the edge states localized at the zigzag edges of the sheet.  相似文献   

12.
《中国物理 B》2021,30(5):57201-057201
Valley filter is a promising device for producing valley polarized current in graphene-like two-dimensional honeycomb lattice materials. The relatively large spin–orbit coupling in silicene contributes to remarkable quantum spin Hall effect, which leads to distinctive valley-dependent transport properties compared with intrinsic graphene. In this paper,quantized conductance and valley polarization in silicene nanoconstrictions are theoretically investigated in quantum spinHall insulator phase. Nearly perfect valley filter effect is found by aligning the gate voltage in the central constriction region. However, the valley polarization plateaus are shifted with the increase of spin–orbit coupling strength, accompanied by smooth variation of polarization reversal. Our findings provide new strategies to control the valley polarization in valleytronic devices.  相似文献   

13.
We propose and experimentally demonstrate a wideband linear polarization converter in a reflection mode operating from 2.4 to 4.2 THz with conversion efficiency of more than 80%. Our device can expand the applications to a higher frequency band. A numerical simulation is performed for this metamaterial converter, which shows a good agreement with experimental results. Importantly, a concise and intuitive calculating model is proposed for the Fabry–Pérot cavity. The theoretical results indicate that the underlying reason for the enhanced polarization conversion is the additional phase difference induced by the resonance of the meta-structure and multiple reflections within the Fabry–Pérot cavity.  相似文献   

14.
Suspended graphene devices are successfully fabricated by using a novel PMMA/MMA/PMMA tri-layer resist technique. The gap between graphene and dielectric substrate can be easily controlled by the thickness of the bottom PMMA layer, and no wet-etching with hazardous hydrofluoric acid is involved in our fabrication process. Electrical characterizations on suspended graphene devices are performed in vacuum when in-situ current annealing directly leads to a significant improvement on transport properties of graphene, i.e., the increase of carrier mobility with the reduction of width of Dirac peak. Our results make a new opportunity to study intrinsic properties of graphene.  相似文献   

15.
A on,dimensional ring subject to Rashba spin-orbit coupling is investigated. When it is attached to a lead with spin-dependent chemical potential, there will be charge current in the ring. The charge current response is resonantly maximized when the Fermi energy of the lead is equal to any energy level of the 1D ring. And if two probes are attached to the ring, the electric voltage between them creates sawtooth-like wave, which indicates the direction of the charge current. A ferromagnetic lead can also induce persistent charge current, which can be detected by magnetization intensity measurement.  相似文献   

16.
We study the plasmonic properties of hybrid nanostructures consisting of double vacancy defected graphene(DVDGr)and metallic nanoarrays using the time-dependent density functional theory. It is found that DVDGr with pure and mixed noble/transition-metal nanoarrays can produce a stronger light absorption due to the coherent resonance of plasmons than graphene nanostructures. Comparing with the mixed Au/Pd nanoarrays, pure Au nanoarrays have stronger plasmonic enhancement. Furthermore, harmonics from the hybrid nanostructures exposed to the combination of lasers ranged from ultraviolet to infrared and a controlling pulse are investigated theoretically. The harmonic plateau can be broadened significantly and the energy of harmonic spectra is dramatically extended by the controlling pulse. Thus, it is possible to tune the width and intensity of harmonic spectrum to achieve broadband absorption of radiation. The methodology described here not only improves the understanding of the surface plasmon effect used in a DVDGr-metal optoelectronic device but also may be applicable to different optical technologies.  相似文献   

17.
肖贤波  李小毛  陈宇光 《中国物理 B》2009,18(12):5462-5467
We investigate theoretically the spin-dependent electron transport in a straight waveguide with Rashba spin--orbit coupling (SOC) under the irradiation of a transversely polarized electromagnetic (EM) field. Spin-dependent electron conductance and spin polarization are calculated as functions of the emitting energy of electrons or the strength of the EM field by adopting the mode matching approach. It is shown that the spin polarization can be manipulated by external parameters when the strength of Rashba SOC is strong. Furthermore, a sharp step structure is found to exist in the total electron conductance. These results can be understood by the nontrivial Rashba subbands intermixing and the electron intersubband transition when a finite-range transversely polarized EM field irradiates a straight waveguide.  相似文献   

18.
Three-dimensional integrated circuits(3D ICs)have entered into the mainstream due to their high performance,high integration,and low power consumption.When used in atmospheric environments,3D ICs are irradiated inevitably by neutrons.In this paper,a 3D die-stacked SRAM device is constructed based on a real planar SRAM device.Then,the single event upsets(SEUs)caused by neutrons with different energies are studied by the Monte Carlo method.The SEU cross-sections for each die and for the whole three-layer die-stacked SRAM device is obtained for neutrons with energy ranging from 1 MeV to 1000 MeV.The results indicate that the variation trend of the SEU cross-section for every single die and for the entire die-stacked device is consistent,but the specific values are different.The SEU cross-section is shown to be dependent on the threshold of linear energy transfer(LETth)and thickness of the sensitive volume(Tsv).The secondary particle distribution and energy deposition are analyzed,and the internal mechanism that is responsible for this difference is illustrated.Besides,the ratio and patterns of multiple bit upset(MBU)caused by neutrons with different energies are also presented.This work is helpful for the aerospace IC designers to understand the SEU mechanism of 3D ICs caused by neutrons irradiation.  相似文献   

19.
We propose general principles to construct two-dimensional(2D) single-atom-thick carbon allotropes. They can be viewed as the generalization of patterning Stone–Walse defects(SWDs) by manipulating bond rotation and of patterning inverse SWDs by adding(or removing) carbon pairs on the pristine graphene, respectively. With these principles, numerous 2D allotropes of carbon can be systematically constructed. Using 20 constructed 2D allotropes as prototypical and benchmark examples, besides nicely reproducing all well-known ones, such as pentaheptites, T-graphene, OPGs, etc, we still discover 13 new allotropes. Their structural, thermodynamic, dynamical, and electronic properties are calculated by means of first-principles calculations. All these allotropes are metastable in energy compared with that of graphene and, except for OPG-A and C3-10-H allotropes, the other phonon spectra of 18 selected allotropes are dynamically stable. In particular, the proposed C3-11 allotrope is energetically favorable than graphene when the temperature is increased up to 1043 K according to the derived free energies. The electronic band structures demonstrate that(i) the C3-8 allotrope is a semiconductor with an indirect DFT band gap of 1.04 e V,(ii) another unusual allotrope is C3-12 which exhibits a highly flat band just crossing the Fermi level,(iii) four allotropes are Dirac semimetals with the appearance of Dirac cones at the Fermi level in the lattices without hexagonal symmetry, and(vi) without the spin–orbit coupling(SOC) effect, the hexagonal C3-11 allotrope exhibits two Dirac cones at K and K points in its Brillouin zone in similarity with graphene.  相似文献   

20.
姚文杰  俞重远  刘玉敏 《中国物理 B》2010,19(7):77101-077101
The band structures of rectangular GaN/AlGaN quantum wires are modeled by using a parabolic effective-mass theory.The absorption coefficients are calculated in a contact-density matrix approach based on the band structure.The results obtained indicate that the peak absorption coefficients augment with the increase of the injected carrier density,and the optical gain caused by interband transition is polarization anisotropic.For the photon energy near 1.55 eV,we can obtain relatively large peak gain.The calculations support the previous results published in the recent literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号