首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new two-layer model has been proposed to study microscale heat transfer associated with a developing flow boundary layer. As an example, a cold, microscale film of liquid impinging on an isothermal hot, horizontal surface has been investigated. The boundary layer is divided into two regions: a micro layer at microscale away from the surface and a macro layer at macroscale away from the surface. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for microscale film flow. The approximate solution may provide a valuable basis for assessing microscale flow and heat transfer in more complex settings.  相似文献   

2.
The present paper addresses the megnetohydrodynamic Jeffrey fluid flow with heat and mass transfer on an infinitely rotating upright cone. Inquiry is carried out with heat source/sink and chemical reaction effects. Further, constant thermal and concentration flux situations are imposed. Optimal homotopy analysis method (OHAM) is employed to achieve series solutions of the concerned differential equations. Important results of the flow phenomena are explored and deliberated by means of graphs and numerical tables. It is perceived that thermal boundary layer thickness possess contrast variations for the heat source and heat sink, respectively. The chemical reaction enhances the heat transfer rate but decline the mass transfer rate. Moreover, the precision of the existing findings is verified by associating them with the previously available work.  相似文献   

3.
A boundary layer solution is presented to study the effects of joule heating on magnetohydrodynamic natural convection flow. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. Four different cases of flows have been studied namely an isothermal surface, a uniform heat flux surface, a plane plume and flow generated from—a horizontal line energy source a vertical adiabatic surface. Numerical results presented for the perturbation analysis four boundary conditions with various parameters are tabulated.  相似文献   

4.
王小虎  易仕和  付佳  陆小革  何霖 《物理学报》2015,64(5):54706-054706
高超声速后台阶流动是大气层内高速飞行器发动机设计、表面热防护以及高超声速拦截器红外成像窗口气动光学效应校正等诸多先进高超声速技术研发过程中所涉及的一类基础流动问题. 研究高超声速后台阶流动特性对有效提升飞行器综合性能, 进一步掌握高超声速流动机理具有重大基础 意义. 本文以二维高超声速后台阶流动为研究对象, 在KD-01高超声速激波风洞中测量了二维后台阶模型表面传热系数和表面静压, 并将实测台阶下游表面传热系数分布同采用高超声速边界层理论所得估计值进行了比较. 为进一步验证实验结果, 使用NPLS技术测量了其中一种实验状态下台阶周围流动结构. 研究发现, 对于二维高超声速后台阶流动, 台阶下游表面传热分布受台阶处边界层外缘流动特性的直接影响; 在台阶下游分离区和再附区内, 气体黏性占主导作用; 在台阶下游远场区域, 边界层流动特性趋同于平板边界层; 下游边界层基本结构取决于台阶处边界层相对厚度. 对高超声速后台阶流动, 若使用数值模拟方法研究气动热问题, 应当使用湍流模型.  相似文献   

5.
在无扰动、随机式扰动以及正弦式扰动下,通过对竖直恒温面处状态Ra为1.328×10^9、Pr为6.24的自然对流进行模拟,探索了热边界层的不稳定性和共振强化自然对流换热。结果表明:(1)竖直自然对流边界层上游位置的随机式扰动对热边界层的影响主要体现在稳定阶段;(2)该状态下的竖直自然对流边界层的特征频率为15 067,且相比于无扰动状态,频率为15 067的正弦式扰动能在竖直恒温面处提高5.15%的换热量;(3)在竖直自然对流边界层上游位置加入特征频率的正弦式扰动,竖直恒温面处的局部努塞尔数Nu均出现明显波动,且波动随着边界层高度的增加而增大。  相似文献   

6.
The present study describes the results of an experimental investigation of heat transfer rate on the wall surface downstream of vortex generators and includes the effect of different angles of attack of the vortex generators on heat transfer. Heat transfer measurements are made with thermochromatic liquid crystal (TLC) to provide the local distributions of heat transfer coefficients. The major conclusions are obtained from this study. The boundary layer is thinned in the regions where the secondary flow is directed to the wall and thickened where it is directed away from the wall. The peak augmentation of the local heat transfer occurs in the downwash region near the point of minimum boundary layer thickness, and the common-flow-down cases show better heat transfer enhancement than the common-flow-up cases.  相似文献   

7.
In this problem, simultaneous effects of Joule and viscous dissipationin three-dimensional flow of nanoliquid have been addressed in slip flow regime under timedependent rotational oscillations. Silver nanoparticles are submerged in the base fluid (water)due to their chemical and biological features. To increment the novelty, effects of cubicautocatalysis chemical reactions and radiative heat transfer have been incorporated in therelated boundary layer equations. Dimensionless partial differential system is solved byemploying the proposed implicit finite difference approach. Convergence conditions andstability criteria are obtained to ensure the convergence and accuracy of solutions.A comparative analysis is proposed for no-slip nanofluid flow (NSNF) and slip nanofluid flow(SNF). Variations in skin-friction coefficients, Sherwood and Nusselt numbers against physicalparameters are tabulated. It is investigated that velocity slip and temperature jump significantlycontrol drag forces and rate of heat transfer.  相似文献   

8.
The problem of spatial flow around a hypersonic flying vehicle is considered for trajectories with different attack angles for flight through air with chemical equilibrium. The conjugate problem statement gives solutions for gas state in the boundary layer, thermal regime of streamlined body (made of different composites), and the rate of mass loss for heat protecting material. Physical processes in the condensed phase of carbon-containing coatings have complex nature: processes of heating, pyrolysis, heterogeneous oxidation, and sublimation. These processes result in protective material destruction. It was shown that using different materials for passive protection can be beneficial in reduction of the surface temperature, characteristics of thermochemical degradation, and this allows a control over heat and mass transfer for a flying body.  相似文献   

9.
In this work, the effects of model dimensionality, particle shrinkage, and boundary layer reactions on particle-scale modelling of biomass char conversion under pulverized fuel combustion conditions have been analysed by using six models: zero-dimensional models with constant particle size (0D_Cons) or shrinking particle size (0D_SPM), one-dimensional models with/without considering particle shrinkage (1D_Cons/1D_SPM), and 1D_Cons and 1D_SPM with considering boundary layer reactions (1D_Cons_BH and 1D_SPM_BH). A comparison with existing experimental data shows that the 1D_SPM_BH model with consideration of intra-particle heat and mass transfer, particle shrinkage, and boundary layer reactions is an appropriate model to describe biomass char conversion over a wide range of conditions. The 0D_Cons model is a good approximation for the conditions of small particle size (< 1 mm) at 1273–1473 K, but overestimates the char conversion rate for larger biomass char particle or at high temperatures (regime III). The 0D_SPM model gives a reasonable prediction on char conversion time but predicts a larger contribution of reaction between char and O2 as compared to the 1D_SPM_BH model. The consideration of intra-particle heat and mass transfer in particle-scale modelling (1D_Cons and 1D_SPM) is beneficial to improving the model prediction of char conversion time and the contributions of char oxidation and gasification reactions. The boundary layer reactions have a significant effect on the prediction of char conversion for large particles (> 1 mm) and high temperatures (> 1473 K). An implication for the selection of a particle-scale model in CFD modelling is also given.  相似文献   

10.
The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids,and the Marangoni boundary layer flow with heat generation is investigated.Two cases of solid matrix of porous medium including glass balls and aluminum foam are considered.The governing partial differential equations are simplified by dimensionless variables and similarity transformations,and are solved numerically by using a shooting method with the fourth-fifth-order Runge-Kutta integration technique.It is indicated that the increase of the porosity leads to the enhancement of heat transfer in the surface of the Marangoni boundary layer flow.  相似文献   

11.
In the present work, the entropy generation due to the heat transfer and fluid friction irreversibility is investigated numerically for a three-dimensional flow induced by rotating and stretching motion of a cylinder. The isothermal boundary conditions are taken into account for the heat transfer analysis. The similarity transformations are utilized to convert the governing partial differential equations to ordinary differential equations. Resulting nonlinear differential equations are solved using a numerical scheme. Expressions for the entropy generation number, the Nusselt number and the Bejan number are obtained and discussed through graphs for various physical parameters. An analysis has been made to compare the heat transfer irreversibility with fluid friction irreversibility using the expression of the Bejan number. It is found that the surface is a durable source of irreversibility and the curvature of cylinder is to enhance the fluid friction irreversibility.  相似文献   

12.
多纵向涡对管内湍流换热特性影响的数值分析   总被引:4,自引:0,他引:4  
对多纵向涡对管内湍流换热和流阻特性进行了数值分析。结果表明,多纵向涡可明显强化管内湍流换热,其流阻增加与换热增强相当。在计算范围内管内湍流换热时纵向涡对越多强化效果越好,多纵向涡的尺度应与热边界层厚度相当。同时,管内多纵向涡沿轴向还具有不易衰减的特性,这为多纵向涡的应用提供了方便。  相似文献   

13.
The steady flow of an incompressible viscous fluid due to a rotating disk in a nanofluid is studied. The transformed boundary layer equations are solved numerically by a finite difference scheme, namely the Keller-box method. Numerical results for the flow and heat transfer characteristics are obtained for various values of the nanoparticle volume fraction parameter φ and suction/injection parameter h0. Two models for the effective thermal conductivity of the nanofluid, namely the Maxwell-Garnett model and the Patel model, are considered. It is found that for the Patel model, the heat transfer rate at the surface increases for both suction and injection, whereas different behaviors are observed for the Maxwell-Garnett model, i.e. increasing the values of φ leads to a decrease in the heat transfer rate at the surface for suction, but increases for injection. The results of this study can be used in the design of an effective cooling system for electronic components to help ensure effective and safe operational conditions.  相似文献   

14.
本文提出了边界层充分发展情况下平板马兰各尼流动动量方程和能量方程的相似解,分析了流动与传热随Pr数的变化特征;由于在核沸腾中蒸汽气泡的一般直径大于估算边界层厚度,因而可以忽略表面张力影响,将这一结果用于气泡周界马兰各尼流动效应的初步分析.  相似文献   

15.
We compute the temperature profile near a laterally growing uniformly sheared viscous layer, a melt of the host material. A similarity variable is identified and an analytical solution is found for the temperature field and phase boundary trajectory for the case of uniform sliding. A numerical method for the iterative solution of this non-linear Stefan problem is implemented. In the case of a chemically reactive material with an Arrhenius dependence of the reaction rate on temperature we compute the ignition times. The dependence of the ignition time on the sliding velocity and latent heat of the material is determined numerically.  相似文献   

16.
A thin layer of a Newtonian magnetic fluid wetting the faced-down surface of a horizontal magnetized plate in a vertical magnetic field is considered. The lower boundary of the layer is the interface with a stationary gas. The effect of magnetic forces on the development of the Rayleigh-Taylor instability is considered in the linear formulation of the long-wave approximation of ferrohydrodynamic equations.  相似文献   

17.
Experimental results on convective heat transfer from a single cube on a flat surface are presented for different attack angles to the incident flow and Reynolds numbers. The character of vortex formation and the effect of flow structure on heat transfer at detached flow around a cube were studied by visualization. Local heat transfer and heat transfer averaged over the separate faces and the whole lateral surface of the cube were studied. Contribution of separate cube faces to total heat transfer depending on the attack angle was estimated. Data obtained were compared with those published in literature. The reasons for observed differences caused by the effect of many factors: boundary layer thickness, turbulence level of the incident flow, channel constraint, etc., are analysed.  相似文献   

18.
The steady-state mass transfer of a chemically active impurity to the surface of a stationary dumbbell-shaped particle consisting of two solid contacting reacting spheres of different sizes is analyzed theoretically. The surrounding medium is at rest, and the numerical concentration of the reagent at a large distance from the aggregate of the spheres is maintained constant. The first-order chemical heterogeneous reaction occurs at a high finite rate and is assumed to be isothermal. The solution to the boundary-value diffusion problem is described by a Laplace axisymmetric equation in the system of tangential-spherical coordinates of revolution. A system of two second-order linear perturbed ordinary differential equations with variable coefficients are obtained using the zero-order integral Hankel transformation and its properties from the boundary conditions for transformed functions. Partial integrals and the mean auxiliary Sherwood numbers are obtained approximately. The solution to the formulated problem is used in various technological applications associated with combustion or chemical reactions at the interface between the continuous and discrete phases in the dispersed system, in meteorology, in analysis of problems associated with environmental pollution, etc.  相似文献   

19.
Radiative heat transfer in the steady two-dimensional flow of Walters' B fluid with a non-uniform heat source/sink is investigated. An incompressible fluid is bounded by a stretching porous surface. The convective boundary condition is used for the thermal boundary layer problem. The relevant equations are first simplified under usual boundary layer assumptions and then transformed into a similar form by suitable transformations. Explicit series solutions of velocity and temperature are derived by the homotopy analysis method(HAM). The dimensionless velocity and temperature gradients at the wall are calculated and discussed.  相似文献   

20.
An experimental analysis of ammonia-water absorption process was performed for the falling film and bubble modes in a plate-type absorber. The experiments were made to examine the effects of solution flow rate and gas flow rate on the performance of the absorber. It was found that the bubble mode is superior to the falling film mode for mass transfer performance, and more heat was generated in the bubble mode. Increase of solution flow rate rarely affected the mass transfer, but improved the heat transfer. As the gas flow rate increased, fluidization occurred in the bubble mode and influenced the thermal boundary layer. However, channeling appeared in the falling film mode and decreased the heat transfer area. Increase of the gas flow rate greatly enhanced the performance of heat transfer in the bubble mode but made it worse in the falling film mode. Finally, the results were converted into dimensionless numbers to elucidate physical phenomena and we plotted Sherwood number versus Reynolds number for mass transfer performance and Nusselt number versus Reynolds number for heat transfer performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号