首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈佘喜 《东北数学》2007,23(2):132-140
Let G = (V, E) be a primitive digraph. The vertex exponent of G at a vertex v ∈ V, denoted by expG(v), is the least integer p such that there is a v → u walk of length p for each u ∈ V. We choose to order the vertices of G in the k-point exponent of G and is denoted by expG(k), 1 ≤ k ≤ n. We define the k-point exponent set E(n, k) := {expG(k)| G = G(A) with A ∈ CSP(n)}, where CSP(n) is the set of all n × n central symmetric primitive matrices and G(A) is the associated graph of the matrix A. In this paper, we describe E(n,k) for all n, k with 1 ≤ k ≤ n except n ≡ 1(mod 2) and 1 ≤ k ≤ n - 4. We also characterize the extremal graphs when k = 1.  相似文献   

2.
Let G = (V,E) be a graph without isolated vertices.A set S V is a domination set of G if every vertex in V - S is adjacent to a vertex in S,that is N[S] = V.The domination number of G,denoted by γ(G),is the minimum cardinality of a domination set of G.A set S C V is a paired-domination set of G if S is a domination set of G and the induced subgraph G[S] has a perfect matching.The paired-domination number,denoted by γpr(G),is defined to be the minimum cardinality of a paired-domination set S in G.A subset S V is a power domination set of G if all vertices of V can be observed recursively by the following rules: (i) all vertices in N[S] are observed initially,and (ii) if an observed vertex u has all neighbors observed except one neighbor v,then v is observed (by u).The power domination number,denoted by γp(G),is the minimum cardinality of a power domination set of G.In this paper,the constructive characterizations for trees with γp = γ and γpr = γp are provided respectively.  相似文献   

3.
Let G =(V,E) be a graph without isolated vertices.A set S  V is a domination set of G if every vertex in V -S is adjacent to a vertex in S,that is N[S] = V .The domination number of G,denoted by γ(G),is the minimum cardinality of a domination set of G.A set S  V is a paired-domination set of G if S is a domination set of G and the induced subgraph G[S]has a perfect matching.The paired-domination number,denoted by γpr(G),is defined to be the minimum cardinality of a paired-domination set S in G.A subset S  V is a power domination set of G if all vertices of V can be observed recursively by the following rules:(i) all vertices in N[S] are observed initially,and(ii) if an observed vertex u has all neighbors observed except one neighbor v,then v is observed(by u).The power domination number,denoted by γp(G),is the minimum cardinality of a power domination set of G.In this paper,the constructive characterizations for trees with γp = γ and γpr = γp are provided respectively.  相似文献   

4.
Some properties of the spectrum of graphs   总被引:3,自引:0,他引:3  
Let G be a graph and denote by Q(G)=D(G) A(G),L(G)=D(G)-A(G) the sum and the difference between the diagonal matrix of vertex degrees and the adjacency matrix of G,respectively. In this paper,some properties of the matrix Q(G)are studied. At the same time,anecessary and sufficient condition for the equality of the spectrum of Q(G) and L(G) is given.  相似文献   

5.
We present a method to construct all,but one,133-cubic graphs.1.PrliminariesLet G be a nontrivial loopless graph with vertex—set V(G)and edge-setE(G),denoted as V and E respectively.A subgraph L of G is called a maxi-mum bipartite Subgraph,denoted as MBS,if L has a maximum number of  相似文献   

6.
GRAPHS CHARACTERIZED BY LAPLACIAN EIGENVALUES   总被引:1,自引:0,他引:1       下载免费PDF全文
§1. Introduction Let G = (V,E) be a simple graph. The Laplacian matrix of G is L(G) = D(G)?A(G),where D(G) = diag (du,u ∈V (G)) (du is the degree of a vertex u) and A(G) are the degreediagonal and the adjacency matrices of G. The eigenvalues of L(G) are called the Laplacianeigenvalues and denoted by λ1(G) ≥λ2(G) ≥···≥λn(G) = 0or for short λ1 ≥λ2 ≥···≥λn = 0.The Laplacian matrix of a simple gra…  相似文献   

7.
Let G = (V, E) be a graph without isolated vertices. A set S lohtain in V is a domination set of G if every vertex in V - S is adjacent to a vertex in S, that is N[S] = V. The domination number of G, denoted by γ(G), is the minimum cardinality of a domination set of G. A set S lohtain in V is a paired-domination set of G if S is a domination set of G and the induced subgraph G[S] has a perfect matching. The paired-domination number, denoted by γpr(G), is defined to be the minimum cardinality of a paired-domination set S in G. A subset S lohtain in V is a power domination set of G if all vertices of V can be observed recursively by the following rules: (i) all vertices in N[S] are observed initially, and (ii) if an observed vertex u has all neighbors observed except one neighbor v, then v is observed (by u). The power domination number, denoted by γp(G), is the minimum cardinality of a power domination set of G. In this paper, the constructive characterizations for trees with γp=γ and γpr = γp are provided respectively.  相似文献   

8.
A vertex of a graph is said to dominate itself and all of its neighbors.A double dominating set of a graph G is a set D of vertices of G,such that every vertex of G is dominated by at least two vertices of D.The double domination number of a graph G is the minimum cardinality of a double dominating set of G.For a graph G =(V,E),a subset D V(G) is a 2-dominating set if every vertex of V(G) \ D has at least two neighbors in D,while it is a 2-outer-independent dominating set of G if additionally the set V(G)\D is independent.The 2-outer-independent domination number of G is the minimum cardinality of a 2-outer-independent dominating set of G.This paper characterizes all trees with the double domination number equal to the 2-outer-independent domination number plus one.  相似文献   

9.
Let G be a simple connected graph with vertex set V(G) and edge set E(G).The augmented Zagreb index of a graph G is defined asAZI(G) =∑uv∈E(G)(d_ud_v/(d_u + d_v-2))~3,and the atom-bond connectivity index(ABC index for short) of a graph G is defined asABC(G) =∑uv∈E(G)((d_u + d_v-2)/d_ud_v),where d_u and d_v denote the degree of vertices u and v in G,respectively.In this paper,trees with given diameter minimizing the augmented Zagreb index and maximizing the ABC index are determined,respectively.  相似文献   

10.
Let G be a simple graph with no isolated edge. An Ⅰ-total coloring of a graph G is a mapping φ : V(G) ∪ E(G) → {1, 2, ···, k} such that no adjacent vertices receive the same color and no adjacent edges receive the same color. An Ⅰ-total coloring of a graph G is said to be adjacent vertex distinguishing if for any pair of adjacent vertices u and v of G, we have C_φ(u) = C_φ(v), where C_φ(u) denotes the set of colors of u and its incident edges. The minimum number of colors required for an adjacent vertex distinguishing Ⅰ-total coloring of G is called the adjacent vertex distinguishing Ⅰ-total chromatic number, denoted by χ_at~i(G).In this paper, we characterize the adjacent vertex distinguishing Ⅰ-total chromatic number of outerplanar graphs.  相似文献   

11.
Let G be a graph with vertex set V(G) and edge set E(G). A labeling f : V(G) →Z2 induces an edge labeling f*: E(G) → Z2 defined by f*(xy) = f(x) + f(y), for each edge xy ∈ E(G). For i ∈ Z2, let vf(i) = |{v ∈ V(G) : f(v) = i}| and ef(i) = |{e ∈ E(G) : f*(e) =i}|. A labeling f of a graph G is said to be friendly if |vf(0)- vf(1)| ≤ 1. The friendly index set of the graph G, denoted FI(G), is defined as {|ef(0)- ef(1)|: the vertex labeling f is friendly}. This is a generalization of graph cordiality. We investigate the friendly index sets of cyclic silicates CS(n, m).  相似文献   

12.
§ 1  IntroductionAll graphs considered in this paper are finite,simple plane graphs.G=(V,E,F)denotes a plane graph,with V,E and F being the set of vertices,edges and faces of G,respectively.Two vertices u and v are adjacent,denoted by uv∈E,if there is an edge in Ejoining them.A vertex u is incident with an edge e if u is an endvertex of e.Two faces aresaid to be adjacent if they share a common edge.We use b(f) to denote the boundary of aface f.A face is incident with all vertices and e…  相似文献   

13.
Let G=(V,E)be a graph andφbe a total coloring of G by using the color set{1,2,...,k}.Let f(v)denote the sum of the color of the vertex v and the colors of all incident edges of v.We say thatφis neighbor sum distinguishing if for each edge uv∈E(G),f(u)=f(v).The smallest number k is called the neighbor sum distinguishing total chromatic number,denoted byχ′′nsd(G).Pil′sniak and Wo′zniak conjectured that for any graph G with at least two vertices,χ′′nsd(G)(G)+3.In this paper,by using the famous Combinatorial Nullstellensatz,we show thatχ′′nsd(G)2(G)+col(G)-1,where col(G)is the coloring number of G.Moreover,we prove this assertion in its list version.  相似文献   

14.
PARTITION A GRAPH WITH SMALL DIAMETER INTO TWO INDUCED MATCHINGS   总被引:5,自引:0,他引:5  
§1 IntroductionGraphs considered in this paper are finite and simple.For a graph G,its vertex setandedge set are denoted by V(G) and E(G) ,respectively.If vertices u and v are connected inG,the distance between u and v,denoted by d G(u,v) ,is the length ofa shortest(u,v) -pathin G.The diameter of a connected graph G is the maximum distance between two verticesof G.For X V(G) ,the neighbor set NG(X) of X is defined byNG(X) ={ y∈V(G) \X:there is x∈X such thatxy∈E(G) } .NG({ x} )…  相似文献   

15.
Let D =(V,E)be a primitive digraph.The vertex exponent of D at a vertex v∈V,denoted by exPD(V),is the least integer p such that there is a v→u walk of length p for each u∈V.Following Brualdi and Liu,we order the vertices of D so that exPD(v_1)≤exPD(v_2)≤…≤exPD(v_n).Then exPD(v_k)is called the k- point exponent of D and is denoted by exP_D(k),1≤k≤n.In this paper we define e(n,k):=max{exp_D(k)|D∈PD(n,2)} and E(n,k):= {expD(k)|D∈PD(n,2)},where PD(n,2)is the set of all primitive digraphs of order n with girth 2.We completely determine e(n,k)and E(n,k)for all n,k with n≥3 and 1≤k≤n.  相似文献   

16.
For a graph G =(V,E),a subset VS is a dominating set if every vertex in V is either in S or is adjacent to a vertex in S.The domination number γ(G) of G is the minimum order of a dominating set in G.A graph G is said to be domination vertex critical,if γ(G-v) γ(G) for any vertex v in G.A graph G is domination edge critical,if γ(G ∪ e) γ(G) for any edge e ∈/E(G).We call a graph G k-γ-vertex-critical(resp.k-γ-edge-critical) if it is domination vertex critical(resp.domination edge critical) and γ(G) = k.Ananchuen and Plummer posed the conjecture:Let G be a k-connected graph with the minimum degree at least k+1,where k 2 and k≡|V|(mod 2).If G is 3-γ-edge-critical and claw-free,then G is k-factor-critical.In this paper we present a proof to this conjecture,and we also discuss the properties such as connectivity and bicriticality in 3-γ-vertex-critical claw-free graph.  相似文献   

17.
邵振东 《东北数学》2006,22(2):181-187
An L(2,1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that |f(x)-f(y)|(?)2 if d(x, y)=1 and |f(x)-f(y)|(?)1 if d(x,y)=2. The L(2,1)-labeling numberλ(G) of G is the smallest number k such that G has an L(2,1)-labeling with max{f(v) : v∈V(G)}=k. We study the L(3,2,1)-labeling which is a generalization of the L(2,1)-labeling on the graph formed by the (Cartesian) product and composition of 3 graphs and derive the upper bounds ofλs(G) of the graph.  相似文献   

18.
1. IntroductionThroughout the paPer, we use the terminology and notation of [1] and [2]. Let D =(V(D), A(D)) be a digraPh. If xy is an arc of a digraPh D, then we say that x dominatesy, denoted by x - y. More generally, if A and B are two disjoint vertex sets of D such thatevery vertex of A dominates every vertex of B, then we say that A dominates B, denotedby A - B. The outset N (x) of a vertex x is the set of vertices dominated by x in D,and the inset N--(x) is the set of vertices d…  相似文献   

19.
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)~(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained.  相似文献   

20.
On the adjacent-vertex-strongly-distinguishing total coloring of graphs   总被引:6,自引:0,他引:6  
For any vertex u∈V(G), let T_N(U)={u}∪{uv|uv∈E(G), v∈v(G)}∪{v∈v(G)|uv∈E(G)}and let f be a total k-coloring of G. The total-color neighbor of a vertex u of G is the color set C_f(u)={f(x)|x∈TN(U)}. For any two adjacent vertices x and y of V(G)such that C_f(x)≠C_f(y), we refer to f as a k-avsdt-coloring of G("avsdt"is the abbreviation of"adjacent-vertex-strongly- distinguishing total"). The avsdt-coloring number of G, denoted by X_(ast)(G), is the minimal number of colors required for a avsdt-coloring of G. In this paper, the avsdt-coloring numbers on some familiar graphs are studied, such as paths, cycles, complete graphs, complete bipartite graphs and so on. We proveΔ(G) 1≤X_(ast)(G)≤Δ(G) 2 for any tree or unique cycle graph G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号