首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A 2-dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)\D has at least two neighbors in D.A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D,and the set V(G)\D is independent.The 2-domination(total outer-independent domination,respectively)number of a graph G is the minimum cardinality of a 2-dominating(total outer-independent dominating,respectively)set of G.We investigate the ratio between2-domination and total outer-independent domination numbers of trees.  相似文献   

2.
A set D of vertices of a graph G = (V, E) is called a dominating set if every vertex of V not in D is adjacent to a vertex of D. In 1996, Reed proved that every graph of order n with minimum degree at least 3 has a dominating set of cardinality at most 3n/8. In this paper we generalize Reed's result. We show that every graph G of order n with minimum degree at least 2 has a dominating set of cardinality at most (3n +IV21)/8, where V2 denotes the set of vertices of degree 2 in G. As an application of the above result, we show that for k ≥ 1, the k-restricted domination number rk (G, γ) ≤ (3n+5k)/8 for all graphs of order n with minimum degree at least 3.  相似文献   

3.
A set S of vertices of a graph G = (V, E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. In this paper we prove that for every simple connected graph G of order n ≥ 3,
where d 2(v) is the number of vertices of G at distance 2 from v. R. Khoeilar: Research supported by the Research Office of Azarbaijan University of Tarbiat Moallem.  相似文献   

4.
A dominating set in a graph G is a set S of vertices of G such that every vertex not in S is adjacent to a vertex of S. The domination number of G is the minimum cardinality of a dominating set of G. For a positive integer b, a set S of vertices in a graph G is a b-disjunctive dominating set in G if every vertex v not in S is adjacent to a vertex of S or has at least b vertices in S at distance 2 from it in G. The b-disjunctive domination number of G is the minimum cardinality of a b-disjunctive dominating set. In this paper, we continue the study of disjunctive domination in graphs. We present properties of b-disjunctive dominating sets in a graph. A characterization of minimal b-disjunctive dominating sets is given. We obtain bounds on the ratio of the domination number and the b-disjunctive domination number for various families of graphs, including regular graphs and trees.  相似文献   

5.
Let G = (V,E) be a graph and let S V. The set S is a packing in G if the vertices of S are pairwise at distance at least three apart in G. The set S is a dominating set (DS) if every vertex in VS is adjacent to a vertex in S. Further, if every vertex in VS is also adjacent to a vertex in VS, then S is a restrained dominating set (RDS). The domination number of G, denoted by γ(G), is the minimum cardinality of a DS of G, while the restrained domination number of G, denoted by γr(G), is the minimum cardinality of a RDS of G. The graph G is γ-excellent if every vertex of G belongs to some minimum DS of G. A constructive characterization of trees with equal domination and restrained domination numbers is presented. As a consequence of this characterization we show that the following statements are equivalent: (i) T is a tree with γ(T)=γr(T); (ii) T is a γ-excellent tree and TK2; and (iii) T is a tree that has a unique maximum packing and this set is a dominating set of T. We show that if T is a tree of order n with ℓ leaves, then γr(T) ≤ (n + ℓ + 1)/2, and we characterize those trees achieving equality.  相似文献   

6.
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. Two vertices of G are said to be dotted (identified) if they are combined to form one vertex whose open neighborhood is the union of their neighborhoods minus themselves. We note that dotting any pair of vertices cannot increase the total domination number. Further we show it can decrease the total domination number by at most 2. A graph is total domination dot-stable if dotting any pair of adjacent vertices leaves the total domination number unchanged. We characterize the total domination dot-stable graphs and give a sharp upper bound on their total domination number. We also characterize the graphs attaining this bound.  相似文献   

7.
A set S of vertices of a graph G = (V,E) is a dominating set if every vertex of is adjacent to some vertex in S. The domination number γ(G) is the minimum cardinality of a dominating set of G. The domination subdivision number sdγ(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the domination number. Haynes et al. (Discussiones Mathematicae Graph Theory 21 (2001) 239-253) conjectured that for any graph G with . In this note we first give a counterexample to this conjecture in general and then we prove it for a particular class of graphs.  相似文献   

8.
Let G=(V,E) be a graph without an isolated vertex. A set DV(G) is a total dominating set if D is dominating, and the induced subgraph G[D] does not contain an isolated vertex. The total domination number of G is the minimum cardinality of a total dominating set of G. A set DV(G) is a total outer-connected dominating set if D is total dominating, and the induced subgraph G[V(G)−D] is a connected graph. The total outer-connected domination number of G is the minimum cardinality of a total outer-connected dominating set of G. We characterize trees with equal total domination and total outer-connected domination numbers. We give a lower bound for the total outer-connected domination number of trees and we characterize the extremal trees.  相似文献   

9.
Total domination critical and stable graphs upon edge removal   总被引:1,自引:0,他引:1  
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. A graph is total domination edge critical if the removal of any arbitrary edge increases the total domination number. On the other hand, a graph is total domination edge stable if the removal of any arbitrary edge has no effect on the total domination number. In this paper, we characterize total domination edge critical graphs. We also investigate various properties of total domination edge stable graphs.  相似文献   

10.
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. A graph is total domination vertex removal stable if the removal of an arbitrary vertex leaves the total domination number unchanged. On the other hand, a graph is total domination vertex removal changing if the removal of an arbitrary vertex changes the total domination number. In this paper, we study total domination vertex removal changing and stable graphs.  相似文献   

11.
A fair dominating set in a graph G is a dominating set S such that all vertices not in S are dominated by the same number of vertices from S; that is, every two vertices outside S have the same number of neighbors in S. The fair domination number fd(G) of G is the minimum cardinality of a fair dominating set. In this work, we review the results stated in [Caro, Y., Hansberg, A., and Henning, M., Fair domination in graphs, Discrete Math. 312 (2012), no. 19, 2905–2914], where the concept of fair domination was introduced. Also, some bounds on the fair domination number are derived from results obtained in [Caro, Y., Hansberg, A., and Pepper, R., Regular independent sets in graphs, preprint].  相似文献   

12.
Total Domination in Graphs with Given Girth   总被引:1,自引:0,他引:1  
A set S of vertices in a graph G without isolated vertices is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γ t (G) of G. In this paper, we establish an upper bound on the total domination number of a graph with minimum degree at least two in terms of its order and girth. We prove that if G is a graph of order n with minimum degree at least two and girth g, then γ t (G) ≤ n/2 + n/g, and this bound is sharp. Our proof is an interplay between graph theory and transversals in hypergraphs. Michael A. Henning: Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.  相似文献   

13.
A set S of vertices in a graph G = (V, E) is a total restrained dominating set (TRDS) of G if every vertex of G is adjacent to a vertex in S and every vertex of V − S is adjacent to a vertex in V − S. The total restrained domination number of G, denoted by γ tr (G), is the minimum cardinality of a TRDS of G. Let G be a cubic graph of order n. In this paper we establish an upper bound on γ tr (G). If adding the restriction that G is claw-free, then we show that γ tr (G) = γ t (G) where γ t (G) is the total domination number of G, and thus some results on total domination in claw-free cubic graphs are valid for total restrained domination. Research was partially supported by the NNSF of China (Nos. 60773078, 10832006), the ShuGuang Plan of Shanghai Education Development Foundation (No. 06SG42) and Shanghai Leading Academic Discipline Project (No. S30104).  相似文献   

14.
A set S of vertices of a graph G = (V, E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdgt(G){{\rm sd}_{\gamma_t}(G)} is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. In this paper, we prove that sdgt(G) £ 2gt(G)-1{{\rm sd}_{\gamma_t}(G)\leq 2\gamma_t(G)-1} for every simple connected graph G of order n ≥ 3.  相似文献   

15.
A subset ${S \subseteq V(G)}$ is a double dominating set of G if S dominates every vertex of G at least twice. The double domination number dd(G) is the minimum cardinality of a double dominating set of G. The double domination subdivision number sd dd (G) is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the double domination number. Atapour et al. (Discret Appl Math, 155:1700–1707, 2007) posed an open problem: Prove or disprove: let G be a connected graph with no isolated vertices, then 1 ≤ sd dd (G) ≤ 2. In this paper, we disprove the problem by constructing some connected graphs with no isolated vertices and double domination subdivision number three.  相似文献   

16.
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. A graph is total domination edge addition stable if the addition of an arbitrary edge has no effect on the total domination number. In this paper, we characterize total domination edge addition stable graphs. We determine a sharp upper bound on the total domination number of total domination edge addition stable graphs, and we determine which combinations of order and total domination number are attainable. We finish this work with an investigation of claw-free total domination edge addition stable graphs.  相似文献   

17.
《Quaestiones Mathematicae》2013,36(6):749-757
Abstract

A set S of vertices is a total dominating set of a graph G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set is the total domination number γt(G). A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u with f (u)=0 is adjacent to at least one vertex v of G for which f (v)=2. The minimum of f (V (G))=∑u ∈ V (G) f (u) over all such functions is called the Roman domination number γR (G). We show that γt(G) ≤ γR (G) with equality if and only if γt(G)=2γ(G), where γ(G) is the domination number of G. Moreover, we characterize the extremal graphs for some graph families.  相似文献   

18.
A total dominating set in a graph G is a subset X of V (G) such that each vertex of V (G) is adjacent to at least one vertex of X. The total domination number of G is the minimum cardinality of a total dominating set. A function f: V (G) → {−1, 1} is a signed dominating function (SDF) if the sum of its function values over any closed neighborhood is at least one. The weight of an SDF is the sum of its function values over all vertices. The signed domination number of G is the minimum weight of an SDF on G. In this paper we present several upper bounds on the algebraic connectivity of a connected graph in terms of the total domination and signed domination numbers of the graph. Also, we give lower bounds on the Laplacian spectral radius of a connected graph in terms of the signed domination number of the graph.  相似文献   

19.
We initiate the study of outer-2-independent domination in graphs. An outer-2-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)?D has a neighbor in D and the maximum vertex degree of the subgraph induced by V(G)?D is at most one. The outer-2-independent domination number of a graph G is the minimum cardinality of an outer-2-independent dominating set of G. We show that if a graph has minimum degree at least two, then its outer-2-independent domination number equals the number of vertices minus the 2-independence number. Then we investigate the outer-2-independent domination in graphs with minimum degree one. We also prove the Vizing-type conjecture for outer-2-independent domination and disprove the Vizing-type conjecture for outer-connected domination.  相似文献   

20.
A vertex u in an undirected graph G = (V, E) is said to dominate all its adjacent vertices and itself. A subset D of V is a dominating set in G if every vertex in G is dominated by a vertex in D, and is a minimum dominating set in G if no other dominating set in G has fewer vertices than D. The domination number of G is the cardinality of a minimum dominating set in G.The problem of determining, for a given positive integer k and an undirected graph G, whether G has a dominating set D in G satisfying ¦D¦ ≤ k, is a well-known NP-complete problem. Cockayne have presented a linear time algorithm for finding a minimum dominating set in a tree. In this paper, we will present a linear time algorithm for finding a minimum dominating set in a series-parallel graph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号