首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
对于纵向数据边际模型的均值函数, 有很多非参数估计方法, 其中回归样条, 光滑样条, 似乎不相关(SUR)核估计等方法在工作协方差阵正确指定时具有最小的渐近方差. 回归样条的渐近偏差与工作协方差阵无关, 而SUR核估计和光滑样条估计的渐近偏差却依赖于工作协方差阵. 本文主要研究了回归样条, 光滑样条和SUR核估计的效率问题. 通过模拟比较发现回归样条估计的表现比较稳定, 在大多数情况下比光滑样条估计和SUR核估计的效率高.  相似文献   

2.
This paper develops a robust and efficient estimation procedure for quantile partially linear additive models with longitudinal data, where the nonparametric components are approximated by B spline basis functions. The proposed approach can incorporate the correlation structure between repeated measures to improve estimation efficiency. Moreover, the new method is empirically shown to be much more efficient and robust than the popular generalized estimating equations method for non-normal correlated random errors. However, the proposed estimating functions are non-smooth and non-convex. In order to reduce computational burdens, we apply the induced smoothing method for fast and accurate computation of the parameter estimates and its asymptotic covariance. Under some regularity conditions, we establish the asymptotically normal distribution of the estimators for the parametric components and the convergence rate of the estimators for the nonparametric functions. Furthermore, a variable selection procedure based on smooth-threshold estimating equations is developed to simultaneously identify non-zero parametric and nonparametric components. Finally, simulation studies have been conducted to evaluate the finite sample performance of the proposed method, and a real data example is analyzed to illustrate the application of the proposed method.  相似文献   

3.
对纵向数据的部分线性模型,通常的做法是用样条方法或者核方法逼近非参数部分,然后再用广义估计方程的估计方法去估计参数部分.本文使用P-样条拟合非参数函数,对不同的矩条件用不同的广义矩方法对模型的参数和非参数进行估计,并且给出了估计量的大样本性质;并用计算机模拟和实例证明了当模型中存在不同的矩条件时,采用不同的惩罚广义矩方法可以显著地提高估计精度.  相似文献   

4.
Abstract

An essential feature of longitudinal data is the existence of autocorrelation among the observations from the same unit or subject. Two-stage random-effects linear models are commonly used to analyze longitudinal data. These models are not flexible enough, however, for exploring the underlying data structures and, especially, for describing time trends. Semi-parametric models have been proposed recently to accommodate general time trends. But these semi-parametric models do not provide a convenient way to explore interactions among time and other covariates although such interactions exist in many applications. Moreover, semi-parametric models require specifying the design matrix of the covariates (time excluded). We propose nonparametric models to resolve these issues. To fit nonparametric models, we use the novel technique of the multivariate adaptive regression splines for the estimation of mean curve and then apply an EM-like iterative procedure for covariance estimation. After giving a general algorithm of model building, we show how to design a fast algorithm. We use both simulated and published data to illustrate the use of our proposed method.  相似文献   

5.
In this article, we develop efficient robust method for estimation of mean and covariance simultaneously for longitudinal data in regression model. Based on Cholesky decomposition for the covariance matrix and rewriting the regression model, we propose a weighted least square estimator, in which the weights are estimated under generalized empirical likelihood framework. The proposed estimator obtains high efficiency from the close connection to empirical likelihood method, and achieves robustness by bounding the weighted sum of squared residuals. Simulation study shows that, compared to existing robust estimation methods for longitudinal data, the proposed estimator has relatively high efficiency and comparable robustness. In the end, the proposed method is used to analyse a real data set.  相似文献   

6.
In this paper, we consider the issue of variable selection in partial linear single-index models under the assumption that the vector of regression coefficients is sparse. We apply penalized spline to estimate the nonparametric function and SCAD penalty to achieve sparse estimates of regression parameters in both the linear and single-index parts of the model. Under some mild conditions, it is shown that the penalized estimators have oracle property, in the sense that it is asymptotically normal with the same mean and covariance that they would have if zero coefficients are known in advance. Our model owns a least square representation, therefore standard least square programming algorithms can be implemented without extra programming efforts. In the meantime, parametric estimation, variable selection and nonparametric estimation can be realized in one step, which incredibly increases computational stability. The finite sample performance of the penalized estimators is evaluated through Monte Carlo studies and illustrated with a real data set.  相似文献   

7.
It is well known that specifying a covariance matrix is difficult in the quantile regression with longitudinal data. This paper develops a two step estimation procedure to improve estimation efficiency based on the modified Cholesky decomposition. Specifically, in the first step, we obtain the initial estimators of regression coefficients by ignoring the possible correlations between repeated measures. Then, we apply the modified Cholesky decomposition to construct the covariance models and obtain the estimator of within-subject covariance matrix. In the second step, we construct unbiased estimating functions to obtain more efficient estimators of regression coefficients. However, the proposed estimating functions are discrete and non-convex. We utilize the induced smoothing method to achieve the fast and accurate estimates of parameters and their asymptotic covariance. Under some regularity conditions, we establish the asymptotically normal distributions for the resulting estimators. Simulation studies and the longitudinal progesterone data analysis show that the proposed approach yields highly efficient estimators.  相似文献   

8.
In this paper, we study the local asymptotic behavior of the regression spline estimator in the framework of marginal semiparametric model. Similarly to Zhu, Fung and He (2008), we give explicit expression for the asymptotic bias of regression spline estimator for nonparametric function f. Our results also show that the asymptotic bias of the regression spline estimator does not depend on the working covariance matrix, which distinguishes the regression splines from the smoothing splines and the seemingly u...  相似文献   

9.
In this paper, the semiparametric generalized partially linear models (GPLMs) for longitudinal data is studied. We approximate the nonparametric function in the GPLMs by a regression spline, and use quadratic inference functions (QIF) to take the within-cluster correlation into account without involving direct estimation of nuisance parameters in the correlation matrix. We establish the asymptotic normality of the resulting estimators. The finite sample performance of the proposed methods is evaluated through simulation studies and a real data analysis.  相似文献   

10.

In this paper, we investigate the quantile varying coefficient model for longitudinal data, where the unknown nonparametric functions are approximated by polynomial splines and the estimators are obtained by minimizing the quadratic inference function. The theoretical properties of the resulting estimators are established, and they achieve the optimal convergence rate for the nonparametric functions. Since the objective function is non-smooth, an estimation procedure is proposed that uses induced smoothing and we prove that the smoothed estimator is asymptotically equivalent to the original estimator. Moreover, we propose a variable selection procedure based on the regularization method, which can simultaneously estimate and select important nonparametric components and has the asymptotic oracle property. Extensive simulations and a real data analysis show the usefulness of the proposed method.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号