首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
INDEPENDENT-SET-DELETABLE FACTOR-CRITICAL POWER GRAPHS   总被引:3,自引:0,他引:3  
It is said that a graph G is independent-set-deletable factor-critical (in short, ID-factor-critical), if, for every independent set 7 which has the same parity as |V(G)|, G-I has a perfect matching. A graph G is strongly IM-extendable, if for every spanning supergraph H of G, every induced matching of H is included in a perfect matching of H. The k-th power of G, denoted by Gk, is the graph with vertex set V(G) in which two vertices are adjacent if and only if they have distance at most k in G. ID-factor-criticality and IM-extendability of power graphs are discussed in this article. The author shows that, if G is a connected graph, then G3 and T(G) (the total graph of G) are ID-factor-critical, and G4 (when |V(G)| is even) is strongly IM-extendable; if G is 2-connected, then D2 is ID-factor-critical.  相似文献   

2.
An induced matching M in a graph G is a matching such that V(M) induces a 1-regular subgraph of G. The induced matching number of a graph G, denoted by I M(G), is the maximum number r such that G has an induced matching of r edges. Induced matching number of Pm×Pn is investigated in this paper. The main results are as follows:(1) If at least one of m and n is even, then IM(Pm×Pn=[(mn)/4].(2) If m is odd, then  相似文献   

3.
A graph G is induced matching extendable if every induced matching of G is included in a perfect matching of G. A graph G is generalized induced matching extendable if every induced matching of G is included in a maximum matching of G. A graph G is claw-free, if G dose not contain any induced subgraph isomorphic to K1,3. The k-th power of G, denoted by Gu, is the graph with vertex set V(G) in which two vertices are adjacent if and only if the distance between them is at most k in G. In this paper we show that, if the maximum matchings of G and G3 have the same cardinality, then G3 is generalized induced matching extendable. We also show that this result is best possible. As a result, we show that if G is a connected claw-flee graph, then G3 is generalized induced matching extendable.  相似文献   

4.
The maximum matching graph M(G) of a graph G is a simple graph whose vertices are the maximum matchings of G and where two maximum matchings are adjacent in M(G) if they differ by exactly one edge. In this paper, we prove that if a graph is isomorphic to its maximum matching graph, then every block of the graph is an odd cycle.  相似文献   

5.
Let G be a graph that admits a perfect matching M.A forcing set S for a perfect matching M is a subset of M such that it is contained in no other perfect matchings of G.The cardinality of a forcing set of M with the smallest size is called the forcing number of M,denoted by f(G,M).The forcing spectrum of G is defined as:Spec(G)={f(G,M)|M is a perfect matching of G}.In this paper,by applying the Ztransformation graph(resonance graph)we show that for any polyomino with perfect matchings and any even polygonal chain,their forcing spectra are integral intervals.Further we obtain some sharp bounds on maximum and minimum forcing numbers of hexagonal chains with given number of kinks.Forcing spectra of two extremal chains are determined.  相似文献   

6.
Let G be a simple graph with 2n vertices and a perfect matching.The forcing number f(G,M) of a perfect matching M of G is the smallest cardinality of a subset of M that is contained in no other perfect matching of G.Among all perfect matchings M of G,the minimum and maximum values of f(G,M) are called the minimum and maximum forcing numbers of G,denoted by f(G) and F(G),respectively.Then f(G)≤F(G) ≤n-1.Che and Chen(2011) proposed an open problem:how to characterize the graphs G with f(G)=n-1.Lat...  相似文献   

7.
Let G = (V, E) be a graph without isolated vertices. A set S lohtain in V is a domination set of G if every vertex in V - S is adjacent to a vertex in S, that is N[S] = V. The domination number of G, denoted by γ(G), is the minimum cardinality of a domination set of G. A set S lohtain in V is a paired-domination set of G if S is a domination set of G and the induced subgraph G[S] has a perfect matching. The paired-domination number, denoted by γpr(G), is defined to be the minimum cardinality of a paired-domination set S in G. A subset S lohtain in V is a power domination set of G if all vertices of V can be observed recursively by the following rules: (i) all vertices in N[S] are observed initially, and (ii) if an observed vertex u has all neighbors observed except one neighbor v, then v is observed (by u). The power domination number, denoted by γp(G), is the minimum cardinality of a power domination set of G. In this paper, the constructive characterizations for trees with γp=γ and γpr = γp are provided respectively.  相似文献   

8.
Let G =(V,E) be a graph without isolated vertices.A set S  V is a domination set of G if every vertex in V -S is adjacent to a vertex in S,that is N[S] = V .The domination number of G,denoted by γ(G),is the minimum cardinality of a domination set of G.A set S  V is a paired-domination set of G if S is a domination set of G and the induced subgraph G[S]has a perfect matching.The paired-domination number,denoted by γpr(G),is defined to be the minimum cardinality of a paired-domination set S in G.A subset S  V is a power domination set of G if all vertices of V can be observed recursively by the following rules:(i) all vertices in N[S] are observed initially,and(ii) if an observed vertex u has all neighbors observed except one neighbor v,then v is observed(by u).The power domination number,denoted by γp(G),is the minimum cardinality of a power domination set of G.In this paper,the constructive characterizations for trees with γp = γ and γpr = γp are provided respectively.  相似文献   

9.
Let G = (V,E) be a graph without isolated vertices.A set S V is a domination set of G if every vertex in V - S is adjacent to a vertex in S,that is N[S] = V.The domination number of G,denoted by γ(G),is the minimum cardinality of a domination set of G.A set S C V is a paired-domination set of G if S is a domination set of G and the induced subgraph G[S] has a perfect matching.The paired-domination number,denoted by γpr(G),is defined to be the minimum cardinality of a paired-domination set S in G.A subset S V is a power domination set of G if all vertices of V can be observed recursively by the following rules: (i) all vertices in N[S] are observed initially,and (ii) if an observed vertex u has all neighbors observed except one neighbor v,then v is observed (by u).The power domination number,denoted by γp(G),is the minimum cardinality of a power domination set of G.In this paper,the constructive characterizations for trees with γp = γ and γpr = γp are provided respectively.  相似文献   

10.
Given a simple graph G and a positive integer k, the induced matching k-partition problem asks whether there exists a k-partition (V1,V2,…Vk)of V(G) such that for each i(1≤i≤k),G[Vi] is 1 regular. This paper studies the computational complexity of this problem for graphs with small diameters. The main results are as follows: Induced matching 2-partition problem of graphs with diameter 6 and induced matching 3-partition problem of graphs with diameter 2 are NP- complete;induced matching 2-partition problem of graphs with diameter 2 is polynomially solvable.  相似文献   

11.
A graph G is induced matching extendable, shortly IM-extendable, if every induced matching of G is included in a perfect matching of G. For a nonnegative integer k, a graph G is called a k-edge-deletable IM-extendable graph, if, for every FE(G) with |F|=k, GF is IM-extendable. In this paper, we characterize the k-edge-deletable IM-extendable graphs with minimum number of edges. We show that, for a positive integer k, if G is ak-edge-deletable IM-extendable graph on 2n vertices, then |E(G)|≥(k+2)n; furthermore, the equality holds if and only if either GKk+2,k+2, or k=4r−2 for some integer r≥3 and GC5[N2r], where N2r is the empty graph on 2r vertices and C5[N2r] is the graph obtained from C5 by replacing each vertex with a graph isomorphic to N2r.  相似文献   

12.
The Linear 2-Arboricity of Planar Graphs   总被引:2,自引:0,他引:2  
 Let G be a planar graph with maximum degree Δ and girth g. The linear 2-arboricity la 2(G) of G is the least integer k such that G can be partitioned into k edge-disjoint forests, whose component trees are paths of length at most 2. We prove that (1) la 2(G)≤⌈(Δ+1)/2⌉+12; (2) la 2(G)≤⌈(Δ+1)/2⌉+6 if g≥4; (3) la 2(G)≤⌈(Δ+1)/2⌉+2 if g≥5; (4) la 2(G)≤⌈(Δ+1)/2⌉+1 if g≥7. Received: June 28, 2001 Final version received: May 17, 2002 Acknowledgments. This work was done while the second and third authors were visiting the Institute of Mathematics, Academia Sinica, Taipei. The financial support provided by the Institute is greatly appreciated.  相似文献   

13.
Let G be a graph with vertex set V(G), and let k ⩾ 1 be an integer. A subset DV(G) is called a k-dominating set if every vertex υV(G)-D has at least k neighbors in D. The k-domination number γ k (G) of G is the minimum cardinality of a k-dominating set in G. If G is a graph with minimum degree δ(G) ⩾ k + 1, then we prove that
$ \gamma _{k + 1} (G) \leqslant \frac{{|V(G)| + \gamma _k (G)}} {2}. $ \gamma _{k + 1} (G) \leqslant \frac{{|V(G)| + \gamma _k (G)}} {2}.   相似文献   

14.
A graph G is called induced matching extendable (shortly, IM-extendable) if every induced matching of G is included in a perfect matching of G. A graph G is called strongly IM-extendable if every spanning supergraph of G is IM-extendable. The k-th power of a graph G, denoted by Gk, is the graph with vertex set V(G) in which two vertices are adjacent if and only if the distance between them in G is at most k. We obtain the following two results which give positive answers to two conjectures of Yuan. Result 1. If a connected graph G with |V(G)| even is locally connected, then G2 is strongly IM-extendable. Result 2. If G is a 2-connected graph with |V(G)| even, then G3 is strongly IM-extendable. Research Supported by NSFC Fund 10371102.  相似文献   

15.
 Let G=(V 1,V 2;E) be a bipartite graph with 2km=|V 1|≤|V 2|=n, where k is a positive integer. We show that if the number of edges of G is at least (2k−1)(n−1)+m, then G contains k vertex-disjoint cycles, unless e(G)=(2k−1)(n−1)+m and G belongs to a known class of graphs. Received: December 9, 1998 Final version received: June 2, 1999  相似文献   

16.
An edge of a 3-connected graph is calledcontractible if its contraction results in a 3-connected graph. Ando, Enomoto and Saito proved that every 3-connected graph of order at least five has |G|/2 or more contractible edges. As another lower bound, we prove that every 3-connected graph, except for six graphs, has at least (2|E(G)| + 12)/7 contractible edges. We also determine the extremal graphs. Almost all of these extremal graphsG have more than |G|/2 contractible edges.  相似文献   

17.
Letk2 be an integer and let G be a graph of ordern with minimum degree at leastk, n8k -16 for evenn and n⩾6k - 13 for oddn. If the degree sum of each pair of nonadjacent vertices of G is at least n, then for any given Hamiltonian cycleC. G has a [k, k + 1]-factor containingC Preject supported partially by an exchange program between the Chinese Academy of Sciences and the Japan Society for Promotion of Sciences and by the National Natural Science Foundation of China (Grant No. 19136012)  相似文献   

18.
A new version of the Ruffini–Horner rule is presented for the evaluation of a polynomial of degree n at a point. In the PRAM model of parallel computation the new algorithm requires log n parallel steps with n/2+1 processors and the total number of arithmetic operations is n+⌈log2(n+1)⌉ -1 multiplications and n additions. If the polynomial is sparse, i.e., the number of nonzero coefficients is k≪ n, then the total number of operations is at most k(⌈log n⌉- ⌊log k⌋)+2k+⌈log n⌉. Moreover, similarly to the customary Ruffini–Horner rule, the algorithm is backward numerically stable. In other words, the value provided by applying the algorithm in floating point arithmetic with machine precision μ coincides with the value taken on at the same point by a slightly perturbed polynomial. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
A near perfect matching is a matching saturating all but one vertex in a graph. Let G be a connected graph. If any n independent edges in G are contained in a near perfect matching where n is a positive integer and n(|V(G)|-2)/2, then G is said to be defect n-extendable. If deleting any k vertices in G where k|V(G)|-2, the remaining graph has a perfect matching, then G is a k-critical graph. This paper first shows that the connectivity of defect n-extendable graphs can be any integer. Then the characterizations of defect n-extendable graphs and (2k+1)-critical graphs using M-alternating paths are presented.  相似文献   

20.
In this paper, we obtain the following result: Let k, n 1 and n 2 be three positive integers, and let G = (V 1,V 2;E) be a bipartite graph with |V1| = n 1 and |V 2| = n 2 such that n 1 ⩾ 2k + 1, n 2 ⩾ 2k + 1 and |n 1n 2| ⩽ 1. If d(x) + d(y) ⩾ 2k + 2 for every xV 1 and yV 2 with xy $ \notin $ \notin E(G), then G contains k independent cycles. This result is a response to Enomoto’s problems on independent cycles in a bipartite graph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号