首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 702 毫秒
1.
We investigate the tradeoff between finished-goods inventory and advance demand information for a model of a single-stage make-to-stock supplier who uses an order-base-stock replenishment policy to meet customer orders that arrive a fixed demand lead-time in advance of their due-dates. We show that if the replenishment orders arrive in the order that they are placed, then the tradeoff between the optimal order-base-stock level and the demand lead-time is “exhaustive”, in the sense that the optimal order-base-stock level drops all the way to zero if the demand lead-time is sufficiently long. We then provide a sufficient condition under which this tradeoff is linear. We verify that this condition is satisfied for the case where the supply process is modeled as an M/M/1 queue. We also show that the tradeoff between the optimal order-base-stock level and the demand lead-time is linear for the case where the supply process is modeled as an M/D/1 queue. More specifically, for this case, we show that the optimal order-base-stock level decreases by one unit if the demand lead-time increases by an amount equal to the supplier’s constant processing time. Finally, we show that the tradeoff between the optimal order-base-stock level and the demand lead-time is exhaustive but not linear in the case where the supply process is modeled as an M/D/∞ queue. We illustrate these results with a numerical example.  相似文献   

2.
Coordination across different process stages of the supply chain is becoming more common as the information needed for this coordination is easier to obtain and share. With the availability of this information, managers are beginning to recognize that there can be benefits to scheduling processes in a coordinated fashion. Thus, finding good schedules for the entire supply chain has added importance to today’s managers. Coordination of the material as it moves from one stage to the next should lead to improved customer order lead-time performance for the whole chain and thus better customer service overall. We look at a two-stage assembly supply chain with the objective of minimizing the average customer order lead-time. Minimizing lead-time is becoming increasingly important as customers demand quicker response. But beyond this better customer service objective, minimizing lead-time is consistent with keeping inventory costs low. We introduce a number of properties of optimal solutions, results for special problem cases, and a series of lower bounds. We also provide a number of intuitive heuristics for coordinated supply chain scheduling and test them to determine their effectiveness.  相似文献   

3.
In the present model a fuzzy random periodic review system has been investigated with the annual demand assumed to be a discrete fuzzy random variable with associated imprecise probabilities. Keeping in mind the widespread application of the Just-In-Time manufacturing philosophy and lead-time management being one of its most effective methods of implementation, the lead-time has been assumed to be an added control parameter. Also as it may not be always possible to resolve the lead-time into all its components and estimate their individual crashing costs, the crashing cost has been introduced as a negative exponential function of the lead-time. A methodology has been developed in this regard such that the total inventory cost is minimized and the optimal period of review, the optimal target inventory level and the optimal lead-time are determined in the process. An algorithm has been provided to encapsulate the methodology and it has been illustrated by way of a numerical example.  相似文献   

4.
We consider a problem of optimal production control of a single unreliable machine. The objective is to minimize a discounted convex inventory/backlog cost over an infinite horizon. Using the variational analysis methodology, we develop the necessary conditions of optimality in terms of the co-state dynamics. We show that an inventory-threshold control policy is optimal when the work and repair times are exponentially distributed, and demonstrate how to find the value of the threshold in this case. We consider also a class of distributions concentrated on finite intervals and prove properties of the optimal trajectories, as well as properties of an optimal inventory threshold that is time dependent in this case.  相似文献   

5.
Capacity acquisition is often capital- and time-consuming for a business, and capacity investment is often partially or fully irreversible and difficult to change in the short term. Moreover, capacity determines the action space for service/production scheduling and lead-time quotation decisions. The quoted lead-time affects the customer’s perceived service quality. Thus, capacity acquisition level and lead-time quotation affect a firm’s revenue/profit directly or indirectly. In this paper, we investigate a joint optimization problem of capacity acquisition, delivery lead-time quotation and service-production scheduling with cyclical and lead-time-dependent demands. We first explore the structural properties of the optimal schedule given any capacity and lead-time. Then, the piecewise concave relationship between the delay penalty cost and the capacity acquisition level is found. Thereby, an efficient and effective polynomial time algorithm is provided to determine the optimal capacity acquisition level, delivery lead-time quotation and service/production schedule simultaneously. Furthermore, a capacity competition game among multiple firms is addressed. The numerical studies show that capacity equilibrium often exists and converges to a unique solution.  相似文献   

6.
This paper deals with the optimal scheduling of a one-machine two-product manufacturing system with setup, operating in a continuous time dynamic environment. The machine is reliable. A known constant setup time is incurred when switching over from a part to the other. Each part has specified constant processing time and constant demand rate, as well as an infinite supply of raw material. The problem is formulated as a production flow control problem. The objective is to minimize the sum of the backlog and inventory costs incurred over a finite planning horizon. The global optimal solution, expressed as an optimal feedback control law, provides the optimal production rate and setup switching epochs as a function of the state of the system (backlog and inventory levels). For the steady-state, the optimal cyclic schedule (Limit Cycle) is determined. This is equivalent to solving a one-machine two-product Lot Scheduling Problem. To solve the transient case, the system's state space is partitioned into mutually exclusive regions such that with each region is associated an optimal control policy. A novel algorithm (Direction Sweeping Algorithm) is developed to obtain the optimal state trajectory (optimal policy that minimizes the sum of inventory and backlog costs) for this last case.  相似文献   

7.
We investigate in this paper an optimal two-stage ordering policy for seasonal products. Before the selling season, a retailer can place orders for a seasonal product from her supplier at two distinct stages satisfying the lead-time requirement. Market information is collected at the first stage and is used to update the demand forecast at the second stage by using Bayesian approach. The ordering cost at the first stage is known but the ordering cost at the second stage is uncertain. A two-stage dynamic optimization problem is formulated and an optimal policy is derived using dynamic programming. The optimal ordering policy exhibits nice structural properties and can easily be implemented by a computer program. The detailed implementation scheme is proposed. The service level and profit uncertainty level under the optimal policy are discussed. Extensive numerical analyses are carried out to study the performance of the optimal policy.  相似文献   

8.
In planning and managing production systems, manufacturers have two main strategies for responding to uncertainty: they build inventory to hedge against periods in which the production capacity is not sufficient to satisfy demand, or they temporarily increase the production capacity by “purchasing” extra capacity. We consider the problem of minimizing the long-run average cost of holding inventory and/or purchasing extra capacity for a single facility producing a single part-type and assume that the driving uncertainty is demand fluctuation. We show that the optimal production policy is of a hedging point policy type where two hedging levels are associated with each discrete state of the system: a positive hedging level (inventory target) and a negative one (backlog level below which extra capacity should be purchased). We establish some ordering of the hedging levels, derive equations satisfied by the steady-state probability distribution of the inventory/backlog, and give a more detailed analysis of the optimal control policy in a two state (high and low demand rate) model.  相似文献   

9.
RFID对供应链提前期压缩的影响及协调研究   总被引:2,自引:0,他引:2  
提前期压缩是基于时间竞争的供应链管理的核心,是供应链竞争优势的有力来源。RFID技术通过提高供应链中信息共享、加速物流操作,进而缩短提前期。在市场需求预测精度随提前期变化的假设下,研究由生产商和零售商组成的两阶段供应链中,生产商承担压缩成本采用RFID技术压缩提前期对供应链及其成员收益的影响。确定了可使供应链收益提高的标签成本约束条件,并提出了相应的收益协调机制。研究结果表明:供应链成员的收益随服务水平和标签成本变化而变化,通过引入收益协调机制,可以实现供应链成员收益的Pareto改进。最后通过数值算例对结论进行了验证。  相似文献   

10.
系统集成项目的工期风险传递算法及评价控制   总被引:4,自引:0,他引:4  
系统集成作为项目来管理越来越引起人们的关注。由于大的系统项目是由一个个具体的子项目集成的。且每个子项目都有其自身的特殊性和不确定性。为整个项目的实施带来了一定的困难和风险。而系统集成项目的工期是决定项目能否成功并获得预期收益的至关重要的因素。因此如何有效地进行工期风险评价控制成为一个非常关键的问题。基于此,本提出了一种风险传递算法。从而得出系统集成项目的总工期风险。并进一步从关键风险单元的识别人手进行工期风险的调整、优化和控制。其目的是为系统集成项目的成功实施提供有效的决策支持。  相似文献   

11.
Goods flowing through supply chains usually deteriorate. Such goods may corrupt, volatilize, and degenerate over time and thus cause the decline of their values or quantity. This study focuses on lead-time coordination for supply chains with deteriorating products which facilitates member cooperation and long-time relationships, thus increasing profit for the entire supply chain. A two-level supply chain with a single supplier and a single retailer is considered, in which the product deteriorates in the same manner for both the supplier and retailer, which is allowed to have shortages. A lead-time discount coordination strategy is used to maximize the profit of the entire supply chain by appropriately determining the optimal order quantity and lead-time. A numerical example is given, and sensitivity analyses are performed to analyze the influence of various parameters on the overall profit. The results can help managers establish long-term cooperative relationships in supply chains.  相似文献   

12.
Stochastic Multiproduct Inventory Models with Limited Storage   总被引:2,自引:0,他引:2  
This paper studies multiproduct inventory models with stochastic demands and a warehousing constraint. Finite horizon as well as stationary and nonstationary discounted-cost infinite-horizon problems are addressed. Existence of optimal feedback policies is established under fairly general assumptions. Furthermore, the structure of the optimal policies is analyzed when the ordering cost is linear and the inventory/backlog cost is convex. The optimal policies generalize the base-stock policies in the single-product case. Finally, in the stationary infinite-horizon case, a myopic policy is proved to be optimal if the product demands are independent and the cost functions are separable.  相似文献   

13.
It is often assumed in most deterministic and stochastic inventory models that lead-time is a given parameter and the optimal operating policy is determined on the basis of this unrealistic assumption. However, the manufacturing lead-time is made up of several components (moving time, waiting time, setup time, lot size, and rework time) most of which should be treated as controllable variables. In this paper the effect of setup cost reduction is addressed in a stochastic continuous review inventory system with lead-time depending on lot size and setup time. An efficient iterative procedure is developed to determine the near optimal lot size, reorder point and setup time. Furthermore, a sensitivity analysis is carried out to assess the cost savings that can be realised by investing in setup.  相似文献   

14.
This paper deals with the optimal control of a one-machine two-product manufacturing system with setup changes, operating in a continuous time dynamic environment. The system is deterministic. When production is switched from one product to the other, a known constant setup time and a setup cost are incurred. Each product has specified constant processing time and constant demand rate, as well as an infinite supply of raw material. The problem is formulated as a feedback control problem. The objective is to minimize the total backlog, inventory and setup costs incurred over a finite horizon. The optimal solution provides the optimal production rate and setup switching epochs as a function of the state of the system (backlog and inventory levels). For the steady state, the optimal cyclic schedule is determined. To solve the transient case, the system's state space is partitioned into mutually exclusive regions such that with each region, the optimal control policy is determined analytically.  相似文献   

15.
In this paper, we consider k-echelon extensions of the deterministic one warehouse multi-retailer problem. We give constant factor approximation algorithms for some of these extensions when k is fixed. We focus first on the case without backorders and we give a \((2k-1)\)-approximation algorithm under general assumptions on the evolution of the holding costs as products move toward the final customers. We then improve this result to a k-approximation when the holding costs are monotonically non-increasing or non-decreasing (which is a natural situation in practice). Finally we address problems with backorders: we give a 3-approximation for the one-warehouse multi-retailer problem with backlog and a k-approximation algorithm for the k-level Joint Replenishment Problem with backlog (a variant where inventory can only be kept at the final retailers). Ours results are the first constant approximation algorithms for those problems. In addition, we demonstrate the potential of our approach on a practical case. Our preliminary experiments show that the average optimality gap is around 15%.  相似文献   

16.
In this paper, a periodic review inventory system has been analyzed in a mixed imprecise and uncertain environment where fuzziness and randomness appear simultaneously. A model has been developed with customer demand assumed to be a fuzzy random variable. The lead-time has been assumed to be a constant. The lead-time demand and the lead-time plus one period’s demand have also been assumed to be fuzzy random variables. A methodology has been developed to determine the optimal inventory level and the optimal period of review such that the total expected annual cost in the fuzzy sense is minimized. A numerical example has been presented to illustrate the model.  相似文献   

17.
One of the most common practical inventory control problems is considered. A single-echelon inventory system is controlled by a continuous review (R, Q) policy. The lead-time demand is normally distributed. We wish to minimize holding and ordering costs under a fill rate constraint. Although, it is not especially complicated to derive the optimal solution, it is much more common in practice to use a simple approximate two-step procedure where the order quantity is determined from a deterministic model in the first step. We provide an alternative, equally simple technique, which is based on the observation that the considered problem for each considered fill rate has a single parameter only. The optimal solution for a grid of parameter values is stored in a file. When solving the problem for an item we use interpolation, or for parameter values outside the grid special approximations. The approximation errors turn out to be negligible. As an alternative to the interpolation we also provide polynomial approximations.  相似文献   

18.
Intermittent demand patterns are characterised by infrequent demand arrivals coupled with variable demand sizes. Such patterns prevail in many industrial applications, including IT, automotive, aerospace and military. An intuitively appealing strategy to deal with such patterns from a forecasting perspective is to aggregate demand in lower-frequency ‘time buckets’ thereby reducing the presence of zero observations. However, such aggregation may result in losing useful information, as the frequency of observations is reduced. In this paper, we explore the effects of aggregation by investigating 5000 stock keeping units from the Royal Air Force (UK). We are also concerned with the empirical determination of an optimum aggregation level as well as the effects of aggregating demand in time buckets that equal the lead-time length (plus review period). This part of the analysis is of direct relevance to a (periodic) inventory management setting where such cumulative lead-time demand estimates are required. Our study allows insights to be gained into the value of aggregation in an intermittent demand context. The paper concludes with an agenda for further research.  相似文献   

19.
We consider a production planning problem in a two-machine flowshop subject to breakdown and repair of machines and subject to nonnegativity and upper bound constraints on work-in-process. The objective is to choose machine production rates over time to minimize the long-run average inventory/backlog and production costs. For sufficiently large upper bound on the work-in-process, the problem is formulated as a stochastic dynamic program. We then establish a verification theorem and a partial characterization of the optimal control policy if it exists.  相似文献   

20.
The paper is concerned with the problem of optimal production planning in deterministic pull flow lines with multiple products. The objective is to specify the production policy that minimizes the total inventory and backlog costs overtime. Assuming constant product demands and non-decreasing unit holding costs along the flow, an algorithm which obtains the optimal production policy is developed. This algorithm works for the discounted-cost function as well. The HJB equation is used to verify the optimality of the policy, and the computational complexity of the algorithm is discussed. Some illustrative examples are also included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号