首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 112 毫秒
1.
2.
设$K$是自反的并且具有一致Gateaux可微范数的Banach空间$E$的非空有界闭凸子集.设$T:K\rightarrow K$是一致连续的伪压缩映象.假设$K$的每一非空有界闭凸子集对非扩张映象具有不动点性质.设$\{\lambda_n\}$是$(0,\frac{1}{2}]$中序列满足: (i) $\lim_{n\rightarrow \infty}\lambda_n=0$; (ii) $\sum_{n=0}^{\infty}\lambda_n=\infty$.任给$x_1\in K$,定义迭代序列$\{x_n\}$为:$x_{n+1}=(1-\lambda_n)x_n+\lambda_nTx_n-\lambda_n(x_n-x_1),n\geq 1.$若$\lim_{n\rightarrow \infty}\|x_n-Tx_n\|=0$, 则上述迭代产生的$\{x_n\}$强收敛到$T$的不动点.  相似文献   

3.
若说\[(\Omega ,\mathcal{F},P)\]为完备概率空间,\[F = {({\mathcal{F}_t})_{t \in [a,b]}}\]为\[\mathcal{F}\]的递增子\[\sigma \]域族,且满足通常 条件,\[b \leqslant \infty \].又\[W = \{ {W_t},0 \leqslant t \leqslant b\} \]为关于F的Wiener过程,\[X = \{ {X_t},0 \leqslant t < b\} \]为 循序讨测过程,且 \[P\{ \int_0^b {X_t^2} dt < \infty \} = 1\], 则可定义X关于W的Ito随机积分 \[{(X \cdot W)_t} = \int_0^t {{X_s}} d{W_s},0 \leqslant t \leqslant b\] 这时若记 \[{Z_t} = \exp \{ \int_0^t {{X_s}} d{W_s} - \frac{1}{2}\int_0^t {{X_s}^2} ds\} \] 它便是一个指数(局部)鞅.本文的目的在于证明当X为循序可测正态过程时,只要X关于W的积分存在,\[{\text{\{ }}{Z_t}0 \leqslant {\text{t < b\} }}\]总是一致可积的。 引理1若\[\{ {Z_t},0 \leqslant t < b\} \]为实可测正态过程且 \[\int_0^{\text{b}} {\left\| {{X_t}} \right\|} d{m_t} < \infty \] 其中\[\left\| {{X_t}} \right\| = {(E|{X_t}{|^2})^{1/2}}\],\[{m_t}\]为[0,b)上右连续递增函数,则X的几乎所有样本函数关于\[{m_t}\]可积,且其轨道积分 \[\tilde I = \int_0^{\text{b}} {{X_t}} d{m_t}\] 为正态分布随机变量. 引理2若\[X = \{ {X_t},0 \leqslant t < b\} \]为可测正态过程,其几乎所有样本函数关于右连续增函数\[{m_t}\]可积,即 \[P(\int_0^b {|{X_t}} |d{m_t} < \infty ) = 1\] 则按轨道积分 \[\tilde I = \int_0^{\text{b}} {{X_t}} d{m_t}\] 是正态分布随机变量. 引理3 若\[\{ {\xi _n},n \geqslant 1\} \]为正态分布随机变量序列,则 \[\sum\limits_{j = 1}^\infty {E{\xi _i}^2} \leqslant {[Eexp( - \frac{1}{2}\sum\limits_{j = 1}^\infty {{\xi _i}^2} )]^{ - 2}}\] 进而若\[\sum\limits_{j = 1}^\infty {E{\xi _i}^2} < 1\],则 \[E[exp(\frac{1}{2}\sum\limits_{j = 1}^\infty {{\xi _i}^2} )] \leqslant {(1 - \sum\limits_{j = 1}^\infty {E{\xi _i}^2} )^{ - \frac{1}{2}}}\] 引理4若\[{m_s}\]为[0, b)上右连续增函数,又\[X = \{ X_t^{(i)},0 \leqslant t < b,1 \leqslant i < \infty \} \]为正态 过程,则当\[P\{ \sum\limits_{i = 1}^\infty {\int_0^b {{{({X_t}^{(i)})}^2}d{m_t}} } < \infty \} = 1\]时必有 \[\sum\limits_{i = 1}^\infty {\int_0^b {{{({X_t}^{(i)})}^2}d{m_t}} } < \infty \} = 1\] 进而若;\[\sum\limits_{i = 1}^\infty {\int_0^b {{{({X_t}^{(i)})}^2}d{m_t}} } < 1\],必有 \[Eexp(\frac{1}{2}\sum\limits_{i = 1}^\infty {\int_0^b {{{({X_t}^{(i)})}^2}d{m_s}} } ) \leqslant {(1 - \sum\limits_{j = 1}^\infty {E\int_0^b {{{({X_t}^{(i)})}^2}d{m_s}} } )^{ - \frac{1}{2}}}\] 定理 若\[W = (W_t^{(1)},...,W_t^{(n)},...)\]为一个具有无限个分量的过程,其分量都是连续 正态独立增量过程且满足 \[\begin{gathered} E\{ W_t^{(i)} - W_s^{(i)}\} = 0 \hfill \ E\{ (W_t^{(i)} - W_s^{(i)})(W_t^{(j)} - W_s^{(j)})\} = {\delta _{ij}}(m_t^{(i)} - m_s^{(i)}) \hfill \\ \end{gathered} \] 又\[\{ {f_t} = (f_t^{(1)},...,f_t^{(n)},...)\} \]为循序可测正态过程,若 \[P\{ \sum\limits_{i = 1}^\infty {\int_0^b {{{({f_t}^{(i)})}^2}dm_t^{(i)}} } < \infty \} = 1\] 则 \[{Z_t} = \exp \{ \sum\limits_{i = 1}^\infty {\int_0^b {{f_s}^{(i)}dW_s^{(i)} - \frac{1}{2}\int_0^t {{{({f_s}^{(i)})}^2}dm_s^{(i)}} } } \} ,0 \leqslant t < b\] 是一致可积鞅,特别有\[E{Z_0} = 1\] 利用上述结果及正态过程的Hida-Cramer分解,可以象[1]一样方便地讨论正态测 度的等价性问题并求出其Radon-Nikodym导数.  相似文献   

4.
1. Let X be the conjugate of a separable Banach space satifying the *-Opial condition, i. e., if \[\{ {x_n}\} \subset x,{x_n}\mathop \to \limits^{{w^*}} {x_\infty },{x_\infty } \ne y\], then\[\mathop {\overline {\lim } }\limits_{n \to \infty } ||{x_n} - {x_\infty }|| < \mathop {\overline {\lim } }\limits_{n \to \infty } ||{x_n} - y||\] for rxample \[X = {l_1}\] Let K be a nonempty weak* closed convex subset of X. The main results are: Theorem 1. Suppose T is a ooniinuons mappings of K into itself such that for every \[x,y \in K\],\[||Tx - Ty|| \le a||x - y|| + b\{ ||x - Tx|| + ||y - Ty||\} + c\{ ||x - Ty|| + ||y - Tx||\} \] where real numbers \[a,b,c \ge 0\] and \[a + 2b + 2c = 1\]. Suppose also K is bounded.Then T has at least one fixed point in K. Theorem 2. Let T be a mapping of K into itself, and \[a(x,y),b(x,y),c(x,y)\]be real functions such that for all\[x,y \in K\] \[||Tx - Ty|| \le a(x,y)||x - y|| + b(x,y)\{ ||x - Tx|| + ||y - Ty||\} + c(x,y)\{ ||x - Ty|| + ||y - Tx||\} \] and \[a(x{\rm{y}},y){\rm{ + }}2b(x,y){\rm{ + }}2c(x,y) \le 1\] Suppose there exists \[x \in K\] such that \[O(x) = \{ {T^n}x\} _{n = 1}^\infty \] is bounded and \[\mathop {\inf }\limits_{y,z \in o(x)} c(y,z) > 0\] Then T has at least one fixed point z in K and \[{T^n}x\mathop \to \limits^{{w^*}} z\]. 2. We denote \[CL(x) = \{ A;nonempty{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} closed{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} subset{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} of{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} X\} \] \[K(x) = A;nonempty{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} closed{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} subset{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} of{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} x\} \] here X is a complete metric space with metric d. On \[CL(x)\] and \[K(x)\] we introduce the generalized Hausdorff distance \[H(,)\], The main results are: Theorem 3. Suppose \[\{ T,S\} \] is a pair of set-valued mappings of X into \[CL(x)\],which satisfies the following condition: \[H(Tx,Sy) \le hMax\{ d(x,y),D(x,Tx),D(y,Sy),\frac{1}{2}[D(x,Sy) + D(y,Tx)]\} \] for each \[x,y \in K\], where 0相似文献   

5.
Let \[\varphi (x) = \sum\limits_{k = 1}^\infty {{A_k}} {x^k},\Phi (x) = {e^{\varphi (x)}} = \sum\limits_{k = 1}^\infty {{D_k}} {x^k}\] \[\begin{gathered} \frac{1}{{{{(1 - x)}^\lambda }}} = \sum\limits_{k = 1}^\infty {{d_k}} (\lambda ){x^k} \hfill \ {\overline \Delta _n}(\lambda ) = {\lambda ^{2 - p}}\sum\limits_{k = 1}^\infty {{k^{p - 1}}} \mathop {|{A_k}|}\nolimits_{}^p - \sum\limits_{k = 1}^\infty {\frac{1}{k}} \hfill \\ \end{gathered} \] Milin-Lebedey proved that \[\sum\limits_{k = 0}^\infty {\frac{{|{D_k}{|^p}}}{{d_k^{p - 1}(\lambda )}}} \leqslant \exp \{ {\lambda ^{1 - p}}\sum\limits_{k = 1}^\infty {{k^{p - 1}}} |{A_k}{|^p}\} \] where p>l and \[\lambda \]>0. In this paper, we have proved the following theorems; Theorem 1. Let \[p \geqslant 1,\lambda > 0\] and \[F(x) = \sum\limits_{k = 0}^\infty {\frac{{|{D_k}{|^p}}}{{d_k^p(\lambda )}}} {x^p}\exp \{ - {\lambda ^{1 - p}}\sum\limits_{k = 1}^\infty {{k^{p - 1}}|{A_k}{|^p}{x^k}} \} (2)\] then F(x) is a decreasing function of x on [0, 1]. This theorem is stronger than the result (1). Theorem 2. Let \[p \geqslant 2,\lambda > 0\] and \[{{\bar Q}_n}(\lambda ) = \frac{1}{{n + 1}}\sum\limits_{k = 0}^n {\frac{{|{D_k}{|^p}}}{{d_k^p(\lambda )}}\exp } \{ - \frac{1}{{n + 1}}\sum\limits_{v = 1}^n {\overline {{\Delta _p}} } (\lambda )\} \] then \[{{\bar Q}_n}(\lambda )\] is a decreasing fimctLon of n(n=l, 2,...)In the case p=2 this is contained in the Miiin-Lebedev's result.  相似文献   

6.
Let \[\varphi (x) = \sum\limits_{k = 1}^\infty {{A_k}} {x^k},\Phi (x) = {e^{\varphi (x)}} = \sum\limits_{k = 1}^\infty {{D_k}} {x^k}\] \[\begin{gathered} \frac{1}{{{{(1 - x)}^\lambda }}} = \sum\limits_{k = 1}^\infty {{d_k}} (\lambda ){x^k} \hfill \ {\overline \Delta _n}(\lambda ) = {\lambda ^{2 - p}}\sum\limits_{k = 1}^\infty {{k^{p - 1}}} \mathop {|{A_k}|}\nolimits_{}^p - \sum\limits_{k = 1}^\infty {\frac{1}{k}} \hfill \\ \end{gathered} \] Milin-Lebedey proved that \[\sum\limits_{k = 0}^\infty {\frac{{|{D_k}{|^p}}}{{d_k^{p - 1}(\lambda )}}} \leqslant \exp \{ {\lambda ^{1 - p}}\sum\limits_{k = 1}^\infty {{k^{p - 1}}} |{A_k}{|^p}\} \] where p>l and \[\lambda \]>0. In this paper, we have proved the following theorems; Theorem 1. Let \[p \geqslant 1,\lambda > 0\] and \[F(x) = \sum\limits_{k = 0}^\infty {\frac{{|{D_k}{|^p}}}{{d_k^p(\lambda )}}} {x^p}\exp \{ - {\lambda ^{1 - p}}\sum\limits_{k = 1}^\infty {{k^{p - 1}}|{A_k}{|^p}{x^k}} \} (2)\] then F(x) is a decreasing function of x on [0, 1]. This theorem is stronger than the result (1). Theorem 2. Let \[p \geqslant 2,\lambda > 0\] and \[{{\bar Q}_n}(\lambda ) = \frac{1}{{n + 1}}\sum\limits_{k = 0}^n {\frac{{|{D_k}{|^p}}}{{d_k^p(\lambda )}}\exp } \{ - \frac{1}{{n + 1}}\sum\limits_{v = 1}^n {\overline {{\Delta _p}} } (\lambda )\} \] then \[{{\bar Q}_n}(\lambda )\] is a decreasing fimctLon of n(n=l, 2,...)In the case p=2 this is contained in the Miiin-Lebedev's result.  相似文献   

7.
B -值双随机Dirichlet级数的收敛性   总被引:2,自引:2,他引:0       下载免费PDF全文
主要研究了B -值双随机Dirichlet级数在不同条件(i) {X_n}服从强大数定律,且0<\mathop{\underline{\lim}}\limits_{n-->\infty}\Big\|\frac{\sum\limits_{i=1}^n EX_i}{n}\Big\|\leq \mathop{\overline{\lim}}\limits_{n\to\infty}\Big\|\frac{\sum\limits_{i=1}^n EX_i}{n}\Big\|<+\infty.(ii) {X_{n}}独立不同分布,且\mathop{\underline{\lim}}\limits_{n-->\infty}E||X_n||>0,\quad \sup\limits_{n\geq 1}E||X_n||^p <+\infty \quad (p >1)等条件下的收敛性,得出了收敛横坐标的简洁公式.  相似文献   

8.
在任意实的Banach空间中研究了用具误差的修正的Ishikawa与Mann迭代程序来逼近一致L-Lipschitz的渐近伪压缩映象不动点的强收敛性问题,在去掉条件$$\sum\limits_{n=0}^{\infty}\alpha_{n}^{2}<\infty, \q \sum\limits_{n=0}^{\infty }\gamma_{n}<\infty,\q \sum\limits_{n=0}^{\infty }\alpha_{n}(\beta_{n}+\delta_{n})<\infty,\q \sum\limits_{n=0}^{\infty}\alpha_{n}(k_{n}-1)<\infty$$之下,证明了相关文献的结果仍然成立.所得结果不但改进和推广了最近一些人的最新结果,而且也从根本上改进了定理的证明方法.  相似文献   

9.
线性过程关于大数律的精确渐近性   总被引:1,自引:0,他引:1       下载免费PDF全文
该文主要讨论的是滑线性过程 $X_k=\sum\limits_{i=-\infty}^\infty a_{i+k}\varepsilon_i$,其中 $\{\varepsilon_i; -\infty$\varphi$ -混合或负相伴随机变量序列,$\{a_i;-\inftyp$, 若 $E|\varepsilon_1|^r<\infty$$\lim_{\epsilon\searrow 0}\epsilon^{2(r-p)/(2-p)}\sum\limits_{n=1}^\infty n^{r/p-2}P\{|S_n|\geq \epsilonn^{1/p}\}=\frac{p}{r-p}E|Z|^{2(r-p)/(2-p)},$ 其中 $Z$ 是服从均值为零,方差为 $\tau^2=\sigma^2\cdot(\sum\limits_{i=-\infty}^\infty a_i)^2$的正态分布.  相似文献   

10.
设$W_{\beta}(x)=\exp(-\frac{1}{2}|x|^{\beta})~(\beta > 7/6)$ 为Freud权, Freud正交多项式定义为满足下式$\int_{- \infty}^{\infty}p_{n}(x)p_{m}(x)W_{\beta}^{2}(x)\rd x=\left \{ \begin{array}{ll} 0 & \hspace{3mm} n \neq m , \\ 1 & \hspace{3mm}n = m \end{array} \right.$的  相似文献   

11.
设$K$是实Banach空间$E$中非空闭凸集, $\{T_i\}_i=1^{N}$是$N$个具公共不动点集$F$的严格伪压缩映像, $\{\alpha_n\}\subset [0,1]$是实数列, $\{u_n\}\subset K$是序列, 且满足下面条件 (i)\ 设$K$是实Banach空间$E$中非空闭凸集, $\{T_i\}_i=1^{N}$是$N$个具公共不动点集$F$的严格伪压缩映像, $\{\alpha_n\}\subset [0,1]$是实数列, $\{u_n\}\subset K$是序列, 且满足下面条件 (i)\ 设$K$是实Banach空间$E$中非空闭凸集, $\{T_i\}_i=1^{N}$是$N$个具公共不动点集$F$的严格伪压缩映像, $\{\alpha_n\}\subset [0,1]$是实数列, $\{u_n\}\subset K$是序列, 且满足下面条件 (i)\ 设K是实Banach空间E中非空闭凸集,{Ti}i=1^N是N个具公共不动点集F的严格伪压缩映像,{αn}包括于[0,1]是实数例,{un}包括于K是序列,且满足下面条件(i)0〈α≤αn≤1;(ii)∑n=1∞(1-αn)=+∞.(iii)∑n=1∞ ‖un‖〈+∞.设x0∈K,{xn}由正式定义xn=αnxn-1+(1-αn)Tnxn+un-1,n≥1,其中Tn=Tnmodn,则下面结论(i)limn→∞‖xn-p‖存在,对所有p∈F;(ii)limn→∞d(xn,F)存在,当d(xn,F)=infp∈F‖xn-p‖;(iii)lim infn→∞‖xn-Tnxn‖=0.文中另一个结果是,如果{xn}包括于[1-2^-n,1],则{xn}收敛,文中结果改进与扩展了Osilike(2004)最近的结果,证明方法也不同。  相似文献   

12.
В РАБОтЕ ДАЕтсь ОтВЕт НА ОДИН ВОпРОс, пОстАВ лЕННыИ В. г. кРОтОВыМ. УстАНОВлЕН О, ЧтО ЕслИ Ф(х) — МОНОтОННО ВО жРАстАУЩАь ФУНкцИь,Ф (0)=0, Ф(2х)≦кФ(х), х[0, ∞), тО $$\left\{ {f:\left\| {\sum\limits_{k = 1}^\infty {\mu _k \Phi (\lambda _k \left| {S_k - f} \right|)} } \right\|_c< \infty } \right\} \subseteqq C \Leftrightarrow \sum\limits_{k = 1}^\infty {\mu _k } \Phi (\lambda _k ) = \infty $$ Дль пРОИжВОльНых НЕО тРИцАтЕльНых ЧИслОВ ых пОслЕДОВАтЕльНОстЕ И {Μk} И {λk}. (жДЕсьS k ОБОжНАЧАЕт ЧАстНУУ с УММУ пОРьДкАk РьДА ФУ РьЕ ФУНкцИИf). УстАНОВлЕН О тАкжЕ, ЧтО ВО МНОгИх слУЧАьх $$\left\{ {f:\left\| {\sum\limits_{k = 1}^\infty {\mu _k \Phi (\lambda _k \left| {\tilde S_k - \tilde f} \right|)} } \right\|_c< \infty } \right\} \subseteqq C \Leftrightarrow \sum\limits_{k = 1}^\infty {\frac{1}{{k\lambda _k }}} \Phi ^{ - 1} \left( {\frac{1}{{k\mu _k }}} \right)< \infty .$$   相似文献   

13.
设{X_(ni):1≤i≤n,n≥1}为行间NA阵列,g(x)是R~+上指数为α的正则变化函数,r>0,m为正整数,{a_(ni):1≤i≤n,n≥1}为满足条件(?)|a_(ni)|=O((g(n))~1)的实数阵列,本文得到了使sum from n=1 to ∞n~(r-1)Pr(|■multiply from j=1 to m a_(nij) X_(nij)|>ε)<∞,■ε>0成立的条件,推广并改进了Stout及王岳宝和苏淳等的结论。  相似文献   

14.
Let Θ = (θ 1,θ 2,θ 3) ∈ ℝ3. Suppose that 1, θ 1, θ 2, θ 3 are linearly independent over ℤ. For Diophantine exponents
$\begin{gathered} \alpha (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\sup }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\}, \hfill \\ \beta (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\inf }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\} \hfill \\ \end{gathered}$\begin{gathered} \alpha (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\sup }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\}, \hfill \\ \beta (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\inf }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\} \hfill \\ \end{gathered}  相似文献   

15.
Let E be a real Banach space and K be a nonempty closed convex and bounded subset of E. Let Ti : K→ K, i=1, 2,... ,N, be N uniformly L-Lipschitzian, uniformly asymptotically regular with sequences {ε^(i)n} and asymptotically pseudocontractive mappings with sequences {κ^(i)n}, where {κ^(i)n} and {ε^(i)n}, i = 1, 2,... ,N, satisfy certain mild conditions. Let a sequence {xn} be generated from x1 ∈ K by zn:= (1-μn)xn+μnT^nnxn, xn+1 := λnθnx1+ [1 - λn(1 + θn)]xn + λnT^nnzn for all integer n ≥ 1, where Tn = Tn(mod N), and {λn}, {θn} and {μn} are three real sequences in [0, 1] satisfying appropriate conditions. Then ||xn- Tixn||→ 0 as n→∞ for each l ∈ {1, 2,..., N}. The results presented in this paper generalize and improve the corresponding results of Chidume and Zegeye, Reinermann, Rhoades and Schu.  相似文献   

16.
By means of Riccati transformation technique, we establish some new oscillation criteria for second-order nonlinear delay difference equation $$\Delta (p_n (\Delta x_n )^\gamma ) + q_n f(x_{n - \sigma } ) = 0,\;\;\;\;n = 0,1,2,...,$$ when $\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{Pn}}} \right)^{\frac{1}{\gamma }} = \infty }$ . When $\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{Pn}}} \right)^{\frac{1}{\gamma }} < \infty }$ we present some sufficient conditions which guarantee that, every solution oscillates or converges to zero. When $\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{Pn}}} \right)^{\frac{1}{\gamma }} = \infty }$ holds, our results do not require the nonlinearity to be nondecreasing and are thus applicable to new classes of equations to which most previously known results are not.  相似文献   

17.
Let G ì \mathbb C G \subset {\mathbb C} be a finite region bounded by a Jordan curve L: = ?G L: = \partial G , let W: = \textext[`(G)] \Omega : = {\text{ext}}\bar{G} (with respect to [`(\mathbb C)] {\overline {\mathbb C}} ), $ \Delta : = \left\{ {z:\left| z \right| > 1} \right\} $ \Delta : = \left\{ {z:\left| z \right| > 1} \right\} , and let w = F(z) w = \Phi (z) be a univalent conformal mapping of Ω onto Δ normalized by $ \Phi \left( \infty \right) = \infty, \;\Phi '\left( \infty \right) > 0 $ \Phi \left( \infty \right) = \infty, \;\Phi '\left( \infty \right) > 0 . By A p (G); p > 0; we denote a class of functions f analytic in G and satisfying the condition
|| f ||App(G): = òG | f(z) |pdsz < ¥, \left\| f \right\|_{Ap}^p(G): = \int\limits_G {{{\left| {f(z)} \right|}^p}d{\sigma_z} < \infty, }  相似文献   

18.
In this paper the author proves a new fundamental lemma of Hardy-Lebesgne class $\[{H^2}(\sigma )\]$ and by this lemma obtains some fundamental results of exponential stability of $\[{C_0}\]$-semigroup of bounded linear operators in Banach spaces. Specially, if $\[{\omega _s} = \sup \{ {\mathop{\rm Re}\nolimits} \lambda ;\lambda \in \sigma (A) < 0\} \]$ and $\[\sup \{ \left\| {{{(\lambda - A)}^{ - 1}}} \right\|;{\mathop{\rm Re}\nolimits} \lambda \ge \sigma \} < \infty \]$ , where \[\sigma \in ({\omega _s},0)\]) and A is the infinitesimal generator of a $\[{C_0}\]$-semigroup in a Banach space $X$, then $\[(a)\int_0^\infty {{e^{ - \sigma t}}\left| {f({e^{tA}}x)} \right|} dt < \infty \]$, $\[\forall f \in {X^*},x \in X\]$; (b) there exists $\[M > 0\]$ such that $\[\left\| {{e^{tA}}x} \right\| \le N{e^{\sigma t}}\left\| {Ax} \right\|\]$, $\[\forall x \in D(A)\]$; (c) there exists a Banach space $\[\hat X \supset X\]$ such that $\[\left\| {{e^{tA}}x} \right\|\hat x \le {e^{\sigma t}}\left\| x \right\|\hat x,\forall x \in X.\]$.  相似文献   

19.
Suppose that $\[{x_1},{x_2}, \cdots \]$ are i i d. random variables on a probability space $\[(\Omega ,F,P)\]$ and $\[{x_1}\]$ is normally distributed with mean $\[\theta \]$ and variance $\[{\sigma ^2}\]$, both of which are unknown. Given $\[{\theta _0}\]$ and $\[0 < \alpha < 1\]$, we propose a concrete stopping rule T w. r. e.the $\[\{ {x_n},n \ge 1\} \]$ such that $$\[{P_{\theta \sigma }}(T < \infty ) \le \alpha \begin{array}{*{20}{c}} {for}&{\begin{array}{*{20}{c}} {all}&{\theta \le {\theta _0},\sigma > 0,} \end{array}} \end{array}\]$$ $$\[{P_{\theta \sigma }}(T < \infty ) = 1\begin{array}{*{20}{c}} {for}&{\begin{array}{*{20}{c}} {all}&{\theta > {\theta _0},\sigma > 0,} \end{array}} \end{array}\]$$ $$\[\mathop {\lim }\limits_{\theta \downarrow {\theta _0}} {(\theta - {\theta _0})^2}{({\ln _2}\frac{1}{{\theta - {\theta _0}}})^{ - 1}}{E_{\theta \sigma }}T = 2{\sigma ^2}{P_{{\theta _0}\sigma }}(T = \infty )\]$$ where $\[{\ln _2}x = \ln (\ln x)\]$.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号