首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on [3] and [4],the authors study strong convergence rate of the k_n-NNdensity estimate f_n(x)of the population density f(x),proposed in [1].f(x)>0 and fsatisfies λ-condition at x(0<λ≤2),then for properly chosen k_nlim sup(n/(logn)~(λ/(1 2λ))丨_n(x)-f(x)丨C a.s.If f satisfies λ-condition,then for propeoly chosen k_nlim sup(n/(logn)~(λ/(1 3λ)丨_n(x)-f(x)丨C a.s.,where C is a constant.An order to which the convergence rate of 丨_n(x)-f(x)丨andsup 丨_n(x)-f(x)丨 cannot reach is also proposed.  相似文献   

2.
This paper deals with the following IBV problem of nonlinear parabolic equation: $$\[\left\{ {\begin{array}{*{20}{c}} {{u_t} = \Delta u + F(u,{D_x}u,D_x^2u),(t,x) \in {B^ + } \times \Omega ,}\{u(0,x) = \varphi (x),x \in \Omega }\{u{|_{\partial \Omega }} = 0} \end{array}} \right.\]$$ where $\[\Omega \]$ is the exterior domain of a compact set in $\[{R^n}\]$ with smooth boundary and F satisfies $\[\left| {F(\lambda )} \right| = o({\left| \lambda \right|^2})\]$, near $\[\lambda = 0\]$. It is proved that when $\[n \ge 3\]$, under the suitable smoothness and compatibility conditions, the above problem has a unique global smooth solution for small initial data. Moreover, It is also proved that the solution has the decay property $\[{\left\| {u(t)} \right\|_{{L^\infty }(\Omega )}} = o({t^{ - \frac{n}{2}}})\]$, as $\[t \to + \infty \]$.  相似文献   

3.
AIn this paper, the author obtains the following results:(1) If Taylor coeffiients of a function satisfy the conditions:(i),(ii),(iii)A_k=O(1/k) the for any h>0 the function φ(z)=exp{w(z)} satisfies the asymptotic equality the case h>1/2 was proved by Milin.(2) If f(z)=z α_2z~2 …∈S~* and,then for λ>1/2  相似文献   

4.
In the present paper, we show that there exist a bounded, holomorphic function $\[f(z) \ne 0\]$ in the domain $\[\{ z = x + iy:\left| y \right| < \alpha \} \]$ such that $\[f(z)\]$ has a Dirichlet expansion $\[\sum\limits_{n = 0}^{ + \infty } {{d_n}{e^{ - {u_n}}}} \]$ in the halfplane $\[x > {x_f}\]$ if and only if $\[\frac{a}{\pi }\log r - \sum\limits_{{u_n} < r} {\frac{2}{{{u_n}}}} \]$ has a finite upperbound on $\[[1, + \infty )\]$, where $\[\alpha \]$ is a positive constant,$\[{x_f}( < + \infty )\]$ is the abscissa of convergence of $\[\sum\limits_{n = 0}^{ + \infty } {{d_n}{e^{ - {u_n}}}} \]$ and the infinite sequence $\[\{ {u_n}\} \]$ satisfies $\[\mathop {\lim }\limits_{n \to + \infty } ({u_{n + 1}} - {u_n}) > 0\]$. We also point out some necessary conditions and sufficient ones Such that a bounded holomorphic function in an angular(or half-band) domain is identically zero if an infinite sequence of its derivatives and itself vanish at some point of the domain. Here some result are generalizations of those in [4].  相似文献   

5.
A measure μ is called Carleson measure,iff the condition of Carleson type μ(Q~*)≤C|Q|~α(a≥1)is satisfied,where C is a constant independent of the cube Q with edge lengthq>0 in R~n and Q~*={(y,t)∈R_+~(+1)|y∈Q,0相似文献   

6.
MINIMAL SUBMANIFOLDS IN A RIEMANNIAN MANIFOLD OF QUASI CONSTANT CURVATURE   总被引:8,自引:0,他引:8  
A Riemannian manifold V~m which admits isometric imbedding into two spaces V~(m+p)ofdifferent constant curvatures is called a manifold of quasi constant curvature.TheRiemannian curvature of V~m is expressible in the formand conversely.In this paper it is proved that if M~n is any compact minimal submanifoldwithout boundary in a Riemannian manifold V~(n+p)of quasi constant curvature,then∫_(M~u)(2-1/p)σ~2-[na+1/2(b-丨b丨)(n+1)]σ+n(n-1)b~2*丨≥0,where σ is the square of the norm of the second fundamental form of M~n When V~(n+p)is amanifold of constant curvature,b=0,the above inequality reduces to that of Simons.  相似文献   

7.
Let S~* be the class of functionsf(z)analytic,univalent in the unit disk|z|<1 andmap|z|<1 onto a region which is starlike with respect to w=0 and is denoted as D_f.Letr_0=r_0(f)be the radius of convexity of f(2).In this note,the author proves the following result:(d_0/d~*)≥0.4101492,where d_0= f(z),d~*=|β|.  相似文献   

8.
Suppose that $\[{x_1},{x_2}, \cdots \]$ are i i d. random variables on a probability space $\[(\Omega ,F,P)\]$ and $\[{x_1}\]$ is normally distributed with mean $\[\theta \]$ and variance $\[{\sigma ^2}\]$, both of which are unknown. Given $\[{\theta _0}\]$ and $\[0 < \alpha < 1\]$, we propose a concrete stopping rule T w. r. e.the $\[\{ {x_n},n \ge 1\} \]$ such that $$\[{P_{\theta \sigma }}(T < \infty ) \le \alpha \begin{array}{*{20}{c}} {for}&{\begin{array}{*{20}{c}} {all}&{\theta \le {\theta _0},\sigma > 0,} \end{array}} \end{array}\]$$ $$\[{P_{\theta \sigma }}(T < \infty ) = 1\begin{array}{*{20}{c}} {for}&{\begin{array}{*{20}{c}} {all}&{\theta > {\theta _0},\sigma > 0,} \end{array}} \end{array}\]$$ $$\[\mathop {\lim }\limits_{\theta \downarrow {\theta _0}} {(\theta - {\theta _0})^2}{({\ln _2}\frac{1}{{\theta - {\theta _0}}})^{ - 1}}{E_{\theta \sigma }}T = 2{\sigma ^2}{P_{{\theta _0}\sigma }}(T = \infty )\]$$ where $\[{\ln _2}x = \ln (\ln x)\]$.  相似文献   

9.
The paper considers the random L-Dirichlet seriesf(s,ω)=sum from n=1 to ∞ P_n(s,ω)exp(-λ_ns)and the random B-Dirichlet seriesψτ_0(s,ω)=sum from n=1 to ∞ P_n(σ iτ_0,ω)exp(-λ_ns),where {λ_n} is a sequence of positive numbers tending strictly monotonically to infinity, τ_0∈R is a fixed real number, andP_n(s,ω)=sum from j=1 to m_n ε_(nj)a_(nj)s~ja random complex polynomial of order m_n, with {ε_(nj)} denoting a Rademacher sequence and {a_(nj)} a sequence of complex constants. It is shown here that under certain very general conditions, almost all the random entire functions f(s,ω) and ψ_(τ_0)(s,ω) have, in every horizontal strip, the same order, given byρ=lim sup((λ_nlogλ_n)/(log A_n~(-1)))whereA_n=max |a_(nj)|.Similar results are given if the Rademacher sequence {ε_(nj)} is replaced by a steinhaus seqence or a complex normal sequence.  相似文献   

10.
ON THE JOINT SPECTRUM FOR N-TUPLE OF HYPONORMAL OPERATORS   总被引:1,自引:0,他引:1  
Let A=(A_1,…,A,)be an n-tuple of double commuting hyponormal operators.It is-proved that:1.The joint spectrum of A has a Cartesian decomposition:Re[Sp(A)]=S_p(ReA),Im[Sp(A)]=Sp(ImA);2.The.joint resolvent of A satisfies the growth condition:‖()‖=1/(dist(z,Sp(A)));3.If 0σ(A_i),i=1,2,…,n,then‖A‖=γ_(sp)(A).  相似文献   

11.
To answer the rest part of the problem of Boas R. P. on derivative of polynomial, it is shown that if $\[p(z)\]$ is a polynomial of degree n such that $\[\mathop {\max }\limits_{\left| z \right| \le 1} \left| {p(z)} \right| \le 1\]$ and $\[{p(z) \ne 0}\]$ in $\[\left| z \right| \le k,0 < k \le 1\]$, then $\[\left| {{p^''}(z)} \right| \le n/(1 + {k^n})\]$ for $\[\left| z \right| \le 1\]$. The above estimate is sharp and the equation holds for $\[p(z) = ({z^n} + {k^n})/(1 + {k^n})\]$.  相似文献   

12.
This note is concerned with the equation $$\[\frac{{{d^2}x}}{{d{t^2}}} + g(x) = p(t)\begin{array}{*{20}{c}} {}&{(1)} \end{array}\]$$ where g(x) is a continuously differentiable function of a $\[x \in R\]$, $\[xg(x) > 0\]$ whenever $\[x \ne 0\]$, and $\[g(x)/x\]$ tends to $\[\infty \]$ as \[\left| x \right| \to \infty \]. Let p(t) be a bounded function of $\[t \in R\]$. Define its norm by $\[\left\| p \right\| = {\sup _{t \in R}}\left| {p(t)} \right|\]$ The study of this note leads to the following conclusion which improves a result due to J. E. Littlewood, For any given small constants $\[\alpha > 0,s > 0\]$, there is a continuous and roughly periodic(with respect to $\[\Omega (\alpha )\]$) function p(t) with $\[\left\| p \right\| < s\]$ such that the corresponding equation (1) has at least one unbounded solution.  相似文献   

13.
Let X_1,…,X,be a sequence of p-dimensional iid.random vectors with a commondistribution F(x).Denote the kernel estimate of the probability density of F(if it exists)by_n(x)=n~(-1)h~_n(-p)K((x-X_i)/h_n)Suppose that there exists a measurable function g(x)and h_n>0,h_n→0 such thatlim sup丨f_n(x)-g(x)丨=0 a.s.Does F(x)have a uniformly continuous density function f(x)and f(x)=g(x)?This paperdeals with the problem and gives a sufficient and necessary condition for generalp-dimensional case.  相似文献   

14.
Let $A$, $B$ be unital $\[{C^*}\]$-algebras. $\[{\chi _A} = \{ \varphi |\varphi \]$ are all completely postive linear maps from $\[{M_n}(C)\]$ to $A$ with $\[\left\| {a(\varphi )} \right\| \le 1\]$ $}$. $\[(a(\varphi ) = \left( {\begin{array}{*{20}{c}} {\varphi ({e_{11}})}& \cdots &{\varphi ({e_{1n}})}\{}& \cdots &{}\{\varphi ({e_{n1}})}& \cdots &{\varphi ({e_{nn}})} \end{array}} \right),\]$ where $\[\{ {e_{ij}}\} \]$ is the matrix unit of $\[{M_n}(C)\]$. Let $\[\alpha \]$ be the natural action of $\[SU(n)\]$ on $\[{M_n}(C)\]$ For $\[n \ge 3\]$, if $\[\Phi \]$ is an $\[\alpha \]$-invariant affine isomorphism between $\[{\chi _A}\]$ and $\[{\chi _B}\]$, $\[\Phi (0) = 0\]$, then $A$ and $B$ are $\[^*\]$-isomorphic In this paper a counter example is given for the case $\[n = 2\]$.  相似文献   

15.
In this paper we consider the systems governed, by parabolioc equations \[\frac{{\partial y}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}} ({a_{ij}}(x,t)\frac{{\partial y}}{{\partial {x_j}}}) - ay + f(x,t)\] subject to the boundary control \[\frac{{\partial y}}{{\partial {\nu _A}}}{|_\sum } = u(x,t)\] with the initial condition \[y(x,0) = {y_0}(x)\] We suppose that U is a compact set but may not be convex in \[{H^{ - \frac{1}{2}}}(\Gamma )\], Given \[{y_1}( \cdot ) \in {L^2}(\Omega )\] and d>0, the time optimal control problem requiers to find the control \[u( \cdot ,t) \in U\] for steering the initial state {y_0}( \cdot )\] the final state \[\left\| {{y_1}( \cdot ) - y( \cdot ,t)} \right\| \le d\] in a minimum, time. The following maximum principle is proved: Theorem. If \[{u^*}(x,t)\] is the optimal control and \[{t^*}\] the optimal time, then there is a solution to the equation \[\left\{ {\begin{array}{*{20}{c}} { - \frac{{\partial p}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}({a_{ji}}(x,t)\frac{{\partial p}}{{\partial {x_j}}}) - \alpha p,} }\{\frac{{\partial p}}{{\partial {\nu _{{A^'}}}}}{|_\sum } = 0} \end{array}} \right.\] with the final condition \[p(x,{t^*}) = {y^*}(x,{t^*}) - {y_1}(x)\], such that \[\int_\Gamma {p(x,t){u^*}} (x,t)d\Gamma = \mathop {\max }\limits_{u( \cdot ) \in U} \int_\Gamma {p(x,t)u(x)d\Gamma } \]  相似文献   

16.
If E is a separable type-2 Banach space and Esub<0>sub is a linear subspace of E, then the following are equivalent: (a) There exists a probability measure \[\mu \] on E, Which is \[{E_{\text{0}}}\]-quasi-invariant. (b) There exists a sequence \[({X_n}) \subset E\] such that \[\sum {{e_n}(\omega ){X_n}} \] converges a.s., where \[{{e_n}(\omega )}\] are indepondend identically distributed symmetric stable random variables of index 2,i,e.\[E(\exp (it{\kern 1pt} {\kern 1pt} {e_n}(\omega ))) = exp( - \frac{{{t^2}}}{2})\]for all real t, and \[{E_{\text{0}}} \subset \{ x,x = \sum {{\lambda _n}{X_n}} ,\forall ({\lambda _n}) \in {l_2}\} \] In this note we prove that \[\sum {{\lambda _n}{X_n}} \] is convergent.  相似文献   

17.
Let X_1,…,X_n be iid samples drawn from an m-dimensional population with a probabilitydensity f,belonging to the family C_(ka),i.e.the family of all densities whose partialderivatives of order k are bounded by a.It is desired to estimate the value of f at somepredetermined point a,for example a=0.Farrell obtained some results concerning the bestpossible convergence rates for all estimator sequence,from which it follows,for example,thatthere exists no estimator sequence{γ_n(0)=γ_n(X_1,…,X_n,0)}such that(?)E_f[γ_n(0)-f(0)]~2=o(n~(-2k/(2k m))).This article pursues this problem further and proves that there existsno estimator sequence{γ_n(0)}such thatn~(-k/(2k m))(γ_n(0)-f(0))(?)0,for each f∈C_(ka),where(?)denotes convergence in probability.  相似文献   

18.
19.
Suppose that there is a variance components model $$\[\left\{ {\begin{array}{*{20}{c}} {E\mathop Y\limits_{n \times 1} = \mathop X\limits_{n \times p} \mathop \beta \limits_{p \times 1} }\{DY = \sigma _2^2{V_1} + \sigma _2^2{V_2}} \end{array}} \right.\]$$ where $\[\beta \]$,$\[\sigma _1^2\]$ and $\[\sigma _2^2\]$ are all unknown, $\[X,V > 0\]$ and $\[{V_2} > 0\]$ are all known, $\[r(X) < n\]$. The author estimates simultaneously $\[(\sigma _1^2,\sigma _2^2)\]$. Estimators are restricted to the class $\[D = \{ d({A_1}{A_2}) = ({Y^''}{A_1}Y,{Y^''}{A_2}Y),{A_1} \ge 0,{A_2} \ge 0\} \]$. Suppose that the loss function is $\[L(d({A_1},{A_2}),(\sigma _1^2,\sigma _2^2)) = \frac{1}{{\sigma _1^4}}({Y^''}{A_1}Y - \sigma _1^2) + \frac{1}{{\sigma _2^4}}{({Y^''}{A_2}Y - \sigma _2^2)^2}\]$. This paper gives a necessary and sufficient condition for $\[d({A_1},{A_2})\]$ to be an equivariant D-asmissible estimator under the restriction $\[{V_1} = {V_2}\]$, and a sufficient condition and a necessary condition for $\[d({A_1},{A_2})\]$ to equivariant D-asmissible without the restriction.  相似文献   

20.
Consider the discrete exponential family written in the form P_θ(X=x)=h(x)β(θ)θ~x,x=0,1,2,…,where h(x)>0,x=0,1,2,…,The prior distribution of θ belongs to thefa  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号