首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the linear free vibration analysis of Bernoulli–Euler and Rayleigh curved beams using isogeometric approach. The geometry of the beam as well as the displacement field are defined using the NURBS basis functions which present the basic concept of the isogeometric analysis. A novel approach based on the fundamental relations of the differential geometry and Cauchy continuum beam model is presented and applied to derive the stiffness and consistent mass matrices of the corresponding spatial curved beam element. In the Bernoulli–Euler beam element only translational and torsional inertia are taken into account, while the Rayleigh beam element takes all inertial terms into consideration. Due to their formulation, isogeometric beam elements can be used for the dynamic analysis of spatial curved beams. Several illustrative examples have been chosen in order to check the convergence and accuracy of the proposed method. The results have been compared with the available data from the literature as well as with the finite element solutions.  相似文献   

2.
The influence of a transverse crack on the vibration of a rotating shaft has been at the focus of attention of many researchers. The knowledge of the dynamic behavior of cracked shaft has helped in predicting the presence of a crack in a rotor. Here, the changing stiffness of the cracked shaft is investigated based on a cohesive zone model. This model is developed for mode-I plane strain and accounts for triaxiality of the stress state explicitly by using basic elastic-plastic constitutive relations. Then, the proposed numerical solution is compared to the switching crack model, which is based on linear elastic fracture mechanics. The cohesive zone model is implemented in finite element techniques to predict and to analyse the dynamic behavior of cracked rotor system. Timoshenko beam theory is used to model the discrete shaft under the effect of gravity, unbalance force and gyroscopic effect. The analysis includes the cohesive function for describing the breathing crack and the reduction of the second moment of area of the element at the location of the crack. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The dynamic behavior of geared rotor system with defects is helpful for the failure diagnosis and state detecting of the system. Extensive efforts have been devoted to study the dynamic behaviors of geared systems with tooth root cracks. When surface cracks (especially for slant cracks) appear on the transmission shaft, the dynamic characteristics of the system have not gained sufficient attentions. Due to the parametric excitations induced by slant crack breathing and time-varying mesh stiffness, the steady-state response of the cracked geared rotor system differs distinctly from that of the uncracked system. Thus, utilizing the direct spectral method (DSM), the forced response spectra of a geared rotor system with slant cracked shaft and time-varying mesh stiffness under transmission error, unbalance force and torsional excitations are, respectively, obtained and discussed in detail. The effects of crack types (straight or slant crack) and crack depth on the forced response spectra of the system without and with torsional excitation are considered in the analysis. In addition, how the frequency response characteristics change after considering the crack is also investigated. It is shown that the torsional excitations have significant influence on the forced response spectra of slant cracked system. Sub-critical resonances are also found in the frequency response curves. The results could be used for shaft crack detection in geared rotor system.  相似文献   

4.
This paper investigates the variability of dynamic responses of a beam resting on an elastic foundation, which is subjected to a vehicle with uncertain parameters, such as random mass, stiffness, damping of the vehicle and random fields of mass density, and the elastic modulus of the beam and stiffness of elastic foundation. The vehicle is modeled as a two-degree-of-freedom spring-damper-mass system. The equations of motion of the beam was constructed using a finite element method. The mass and elastic properties of the beam, and the stiffness of foundation are assumed to be Gaussian random fields and were simulated by the spectral represent method. Masses, stiffness of the spring, and the damping coefficient of the vehicle are assumed as Gaussian random variables. The numerical analyses were performed using the finite element method (FEM) in conjunction with the Monte Carlo simulation (MCS). The variability of dynamic responses of the beam were investigated with various cases of random parameters. For each sample, the equations of motions were solved with the Wilson-q integral method to find dynamic responses. The influence of random system parameters and their correlation on the response variability is discussed in detail.  相似文献   

5.
Mehmet Haskul  Murat Kısa 《PAMM》2015,15(1):129-130
Vibration analysis of cracked beams having linearly varying cross-sections both in thickness and width was investigated. A computer program using the finite element method has been written to find the dynamical characteristics (natural frequencies and mode shapes) of the cracked beam. The cracked section in the beam has been modeled by a massless spring whose flexibility depens on the local flexibility induced by the crack. The stiffness of spring has been derived from the linear elastic fracture mechanics theory as the inverse of the compliance matrix calculated using stress intensity factors and strain energy release rate expression. Some examples have been given to explain the proposed method and investigate the effects of the depth and location of cracks on the natural frequencies and mode shapes. The results of current study and those in the literature are compared and good agreements have been found. Consequently it is showed that proposed method is reliable and simple. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The breathing mechanism of a transversely cracked rotor and its influence on a rotor system that appears due to the shaft weight is studied. This breathing mechanism is based on experimental and simulation result for the crack shape reported in the literature. If the crack depth is small, the crack closure line is a straight line while for larger crack depths the crack closure becomes more curved. For both cases, a method is proposed for the evaluation of the stiffness losses in the cross section that contains the crack. This method is based on a cohesive zone model (CZM) instead of linear elastic fracture mechanics (LEFM) approach, because LEFM is valid only for the fully open crack and cannot be extended to other intermediate situations. As the crack is closed, the stress intensity factor (SIF) will not appear at the boundary between the closed cracked areas and the open cracked areas. The CZM is developed for mode-I plane strain conditions and accounts explicitly for triaxiality of the stress state by using constitutive relations. The proposed model gives more realistic results than models based on LEFM for the stiffness losses of the crack rotor system for a wide range of the crack depth. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Zdzislaw Pawlak  Jerzy Rakowski 《PAMM》2008,8(1):10321-10322
The purpose of the paper is to derive an efficient sinusoidal thick beam finite element for the static analysis of 2D structures. A two–node, 6–DOF curved, sine–shape element of a constant cross–section is considered. Effects of flexural, axial and shear deformations are taken into account. Contrary to commonly used curvilinear co–ordinates, a rectangular co–ordinates system is used in the present analysis. First, an auxiliary problem is solved: a symmetric clamped–clamped sinusoidal arch subjected to unit nodal displacements of both supports is considered using the flexibility method. The exact stiffness matrix for the shear–flexible and compressible element is derived. Introduction of two parameters “n” and “t” enables the identification of shear and membrane influences in the element stiffness matrix. Basing on the principle of virtual work a full set of 18 shape functions related to unit support displacements is derived (total rotations of cross–sections, tangential and normal displacements along the element). The functions are found analytically in the closed form. They are functions of one linear dimensionless coordinate of x–axis and depend on one geometrical parameter of sinusoidal arch, height/span ratio “c” and on physical and geometrical properties of the element cross–section. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
It is well known that either the asymmetric disk or transverse crack brings parametric inertia (or stiffness) excitation to the rotor-bearing system. When both of them appear in a rotor system, the parametric instability behaviors have not gained sufficient attentions. Thus, the effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk is studied. First, the finite element equations of motion are established for the asymmetric rotor system. Both the open and breathing transverse cracks are taken into account in the model. Then, the discrete state transition matrix (DSTM) method is introduced for numerically acquiring the instability regions. Based upon these, some computations for a practical asymmetric rotor system with open or breathing transverse crack are conducted, respectively. Variations of the primary and combination instability regions induced by the asymmetric disk with the crack depth are observed, and the effect of the orientation angle between the crack and asymmetric disk on various instability regions are discussed in detail. It is shown that for the asymmetric angle around 0, the existence of transverse (either open or breathing) crack has attenuation effect upon the instability regions. Under certain crack depth, the instability regions could be vanished by the transverse crack. When the asymmetric angle is around π/2, increasing the crack depth would enhance the instability regions.  相似文献   

9.
In this paper, an improved numerical method is developed to obtain the accurate natural frequencies and mode shapes for the coupled bending vibrations of a twisted Bernoulli–Euler beam with multiple edge cracks, and this method can compute the desired number of natural frequencies by dividing the minimum number of subdivisions for a whole structural element with multiple open edge cracks. The development of a method that can simply and accurately compute the variation of the natural frequencies due to the effect of cracking is possible using the distributed mass, transcendental function, and local coordinate systems varying along the length of a twisted beam. Because the in-plane and out-of-plane bending stiffnesses are coupled in two principal planes by the effect of twisting, each crack is modeled as rotational springs in the in-plane and out-of-plane directions. With these assumptions, the effect of cracking for twisted beams is investigated using a parametric study for the various crack depths and locations.  相似文献   

10.
The damping effects with the distinction of stationary damping and the anisotropic rotating damping on the dynamic stability of the rotating rotor with an open crack on the surface of the shaft is studied. The motion equations of the cracked rotor system are formed by Lagranges principal. Different from previous studies, the anisotropic system with the multi periodical varied coefficients is simplified by the moving frame method such that the stability analysis based on the root locus method can be applied. The corresponding Campbell diagram, decay rate plot and roots locus plot are derived to prove the destabilizing influence of both the rotational damping and the varied anisotropy ratio of the rotating damping. The effects of anisotropy of stiffness on the decisions of the critical range are also presented. The result with theoretical precision would not only generally provide practical applicability to crack detection and instability control of the heavy loading turbo-machinery system, but also give the suggestion that, the increased proportion and the aggravated anisotropy of the rotational damping due to the crack of the fatigue rotor should been taken into consideration on the modeling of cracked rotor system.  相似文献   

11.
An application of fuzzy sets, in conjunction with finite elements, to the transient analysis of a precision-deployable space structure is presented. The structural members are modeled by using beam finite elements, and the structure's latch joint is modeled by using a spring–damper–Coulomb friction element. Two types of transient response simulations are performed: slow transient load–deflection response and transient impulse response. The first simulation is used to evaluate the stiffness and buckling loads at the structure's tip. The second simulation is used to evaluate the structure's natural frequencies, mode shapes and the precision of the final shape. For each simulation the possibility distributions of various response quantities are obtained. Fuzzy sets are used to represent three beam properties, namely: damping coefficient, bending stiffness, and axial stiffness; as well as two joint parameters: Coulomb friction force and damping coefficient. Fuzzy set techniques provide an insight into the range of possible responses associated with the combined selected variations in the system parameters.  相似文献   

12.
The presence of a crack in a rotor introduces a local flexibility which affects its dynamic response. Moreover, the crack may open and close during the vibration period. The crack status is a function of time and also depends on the rotational speed and the vibration amplitude of the rotor. This nonlinear case is still a challenging research topic especially in the field of closing crack in the rotating shaft. A cohesive zone model is developed in order to analyze the stiffness of a crack in a rotating shaft. The proposed expression will be compared to three different crack models, namely, a breathing crack model, a switching crack model and an open crack model. Moreover, a cohesive law to predict and to analyse the stress at the crack tip is presented. The numerical model is implemented using a finite element formulation. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
A finite element method (FEM) of B-spline wavelet on the interval (BSWI) is used in this paper to solve the free vibration and buckling problems of plates based on Reissner–Mindlin theory. By aid of the high accuracy of B-spline functions approximation for structural analysis, the proposed method could obtain a fast convergence and a satisfying numerical accuracy with fewer degrees of freedoms (DOF). The numerical examples demonstrate that the present BSWI method achieves the high accuracy compared to the exact solution and others existing approaches in the literatures. The BSWI finite element has potential to be used as a numerical method in analysis and design.  相似文献   

14.
Rotors in electrical machines are supported by various types of bearings. In general, the rotor bearings have nonlinear stiffness properties and they influence the rotor vibrations significantly. In this work, this influence of these nonlinearities is investigated. A simplified finite element model using Timoshenko beam elements is set up for the heterogeneous structure of the rotor. A transversally isotropic material model is adopted for the rotor core stack. Imposing the nonlinear bearing stiffnesses on the model, the Newton-Raphson procedure is used to carry out a run up simulation. The spectral content of these results shows nonlinear effects due to the bearings. The rotor vibrations are further investigated in detail for various constant speeds. These results show non-harmonic vibrations of the rotor in a section of the investigated speed range. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
提出了适用于复杂梁结构损伤检测的子段模态应变能法SSEM(subsectionstrainenergymethod),并分析了该方法的适用性条件.通过对变截面梁的有限元计算,以及对纤维增强复合材料风机叶片缩比模型的试验分析,验证了SSEM方法确定的结构损伤指标对损伤准确定位的可靠性.该基于振动的变刚度复杂梁结构的损伤检测方法,可应用于工程实际中梁和类梁整体结构的损伤检测.  相似文献   

16.
车身骨架是由大量梁类结构单元构成的.除了这些梁的截面形状和尺寸外,边界条件也对系统刚度影响很大.讨论了各种边界条件和载荷模式下的梁系统的合成刚度.基于两端固支的均匀截面梁的弯曲和扭转刚度,研究了各联结刚度的大小对系统刚度的贡献,并绘制了相应的影响曲线.最后,通过上述解析公式和有限元法计算了某汽车仪表板横梁系统的实际弯曲和扭转刚度.文中获得的静态刚度公式对其它梁类结构也适用。  相似文献   

17.
This paper is concerned with vibration analysis of rotating systems containing cracks. The flexibility matrix of cracked element is calculated with modified integration limits which is more accurate than conventional methods. The effect of this modification on the coefficients of flexibility matrix is presented for a simple rotor system containing open crack. To model the crack breathing behavior, a new finite element approach is introduced and implemented. Then, the dynamic response of a rotor with a breathing crack is evaluated by using the frequency/time domain approach (short time Fourier transform). The ability of short time Fourier transform to detect small cracks is investigated and compared with the transient response. The results provide a possible basis for an on-line monitoring system.  相似文献   

18.
A method of creating the stiffness matrix of a hexahedral eight-node finite element with a single, nonpropagating, transverse, one-edge crack at half of its length is presented in this paper. The crack was modelled by adding an additional flexibility matrix to that of the noncracked element. The terms of the additional matrix have been calculated by use of the laws of fracture mechanics. Employing the elaborated element a numerical test has been worked out, the results of which are compared with the data of analytical solutions accessible in the literature, and a high conformity with them has been obtained. The element presented in the paper may be applied to the static and dynamic analysis of different types of structural elements with material defects in the form of cracks. The described method of creating the stiffness matrix of the element allows to create different kinds of finite elements with cracks provided that the stress intensity factors for a given type of crack are known.  相似文献   

19.
This paper discusses the analytical elastostatic stiffness modeling of parallel manipulators (PMs) considering the compliance of the link and joint. The proposed modeling is implemented in three steps: (1) the limb constraint wrenches are formulated based on screw theory; (2) the strain energy of the link and the joint is formulated using material mechanics and a mapping matrix, respectively, and the concentrated limb stiffness matrix corresponding to the constraint wrenches is obtained by summing the strain energy of the links and joints in the limb; and (3) the overall stiffness matrix is assembled based on the deformation compatibility equations. The strain energy factor index (SEFI) is adopted to describe the influence of the elastic components on the stiffness performance of the mechanism. Matrix structural analysis (MSA) using Timoshenko beam elements is applied to obtain analytical expressions for the compliance matrices of different joints through a three-step process: (1) formulate the element stiffness equation for each element; (2) extend the element stiffness equation to obtain the element contribution matrix, allowing the extended overall stiffness matrix to be obtained by summing the element contribution matrices; and (3) determine the stiffness matrices of joints by extracting the node stiffness matrix from the extended overall stiffness matrix and then releasing the degrees of freedom of twist. A comparison with MSA using Euler–Bernoulli beam elements demonstrates the superiority of using Timoshenko beam elements. The 2PRU-UPR PM is presented to illustrate the effectiveness of the proposed approach. Finally, the global SEFI and scatter matrix are used to identify the elastic component with the weakest stiffness performance, providing a new approach for effectively improving the stiffness performance of the mechanism.  相似文献   

20.
This paper deals with the analysis of influence of crack parameters to the modal characteristics of beams at various boundary conditions by using rigid segment method. The beam was discretized by a number of rigid segments which were connected by elastic joints with three degrees of freedom, while the crack was described by cracked element based on fracture mechanics. This model allows detection of coupling between the axial and transverse vibrations under the special boundary conditions. The proposed approach covers both the Euler–Bernoulli and Timoshenko beam model. The efficiency of the method was shown through the few numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号