首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of a transverse crack on the vibration of a rotating shaft has been at the focus of attention of many researchers. The knowledge of the dynamic behavior of cracked shaft has helped in predicting the presence of a crack in a rotor. Here, the changing stiffness of the cracked shaft is investigated based on a cohesive zone model. This model is developed for mode-I plane strain and accounts for triaxiality of the stress state explicitly by using basic elastic-plastic constitutive relations. Then, the proposed numerical solution is compared to the switching crack model, which is based on linear elastic fracture mechanics. The cohesive zone model is implemented in finite element techniques to predict and to analyse the dynamic behavior of cracked rotor system. Timoshenko beam theory is used to model the discrete shaft under the effect of gravity, unbalance force and gyroscopic effect. The analysis includes the cohesive function for describing the breathing crack and the reduction of the second moment of area of the element at the location of the crack. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
This paper is concerned with vibration analysis of rotating systems containing cracks. The flexibility matrix of cracked element is calculated with modified integration limits which is more accurate than conventional methods. The effect of this modification on the coefficients of flexibility matrix is presented for a simple rotor system containing open crack. To model the crack breathing behavior, a new finite element approach is introduced and implemented. Then, the dynamic response of a rotor with a breathing crack is evaluated by using the frequency/time domain approach (short time Fourier transform). The ability of short time Fourier transform to detect small cracks is investigated and compared with the transient response. The results provide a possible basis for an on-line monitoring system.  相似文献   

3.
Establishment of a new approach for analyzing the nonlinear behavior of a cracked rotor system is the main goal of the present research. Nonlinear governing equations of motion are developed for the cracked rotor system with asymmetrical viscoelastic supports. In establishing the approach, the masses of the rotational shaft and a disc mounted on the shaft, geometric nonlinearity of the shaft, and the rotor’s extra displacements due to the existence of the crack are all taken into account. On the basis of the governing equations, the nonlinear behavior of the rotor system is analyzed numerically with considerations of the effects of the crack depth, the crack location, the locations of the disc, and the shaft’s rotational speed. The effects of the crack and the other system parameters on the dynamic stability of the rotor system are also investigated.  相似文献   

4.
The dynamics and diagnosis of cracked rotor have been gaining importance in recent years. In the present study a model-based crack identification method is proposed for estimating crack location and size in shafts. The rotor system has been modeled using finite element method of B-spline wavelet on the interval (FEM BSWI), while the crack is considered through local stiffness change. Based on Rayleigh beam theory, the influences of rotatory inertia on the flexural vibrations of the rotor system are examined to construct BSWI Rayleigh beam element. The slender shaft and stiffness disc are modeled by BSWI Rayleigh–Euler beam element and BSWI Rayleigh–Timoshenko beam element, respectively. Then the crack identification forward and inverse problems are solved by using surface-fitting technique and contour-plotting method. The experimental examples are given to verify the validity of the BSWI beam element for crack identification in a rotor system. From experimental results, the new method can be applied to prognosis and quantitative diagnosis of crack in a rotor system.  相似文献   

5.
The damping effects with the distinction of stationary damping and the anisotropic rotating damping on the dynamic stability of the rotating rotor with an open crack on the surface of the shaft is studied. The motion equations of the cracked rotor system are formed by Lagranges principal. Different from previous studies, the anisotropic system with the multi periodical varied coefficients is simplified by the moving frame method such that the stability analysis based on the root locus method can be applied. The corresponding Campbell diagram, decay rate plot and roots locus plot are derived to prove the destabilizing influence of both the rotational damping and the varied anisotropy ratio of the rotating damping. The effects of anisotropy of stiffness on the decisions of the critical range are also presented. The result with theoretical precision would not only generally provide practical applicability to crack detection and instability control of the heavy loading turbo-machinery system, but also give the suggestion that, the increased proportion and the aggravated anisotropy of the rotational damping due to the crack of the fatigue rotor should been taken into consideration on the modeling of cracked rotor system.  相似文献   

6.
The breathing mechanism of a transversely cracked rotor and its influence on a rotor system that appears due to the shaft weight is studied. This breathing mechanism is based on experimental and simulation result for the crack shape reported in the literature. If the crack depth is small, the crack closure line is a straight line while for larger crack depths the crack closure becomes more curved. For both cases, a method is proposed for the evaluation of the stiffness losses in the cross section that contains the crack. This method is based on a cohesive zone model (CZM) instead of linear elastic fracture mechanics (LEFM) approach, because LEFM is valid only for the fully open crack and cannot be extended to other intermediate situations. As the crack is closed, the stress intensity factor (SIF) will not appear at the boundary between the closed cracked areas and the open cracked areas. The CZM is developed for mode-I plane strain conditions and accounts explicitly for triaxiality of the stress state by using constitutive relations. The proposed model gives more realistic results than models based on LEFM for the stiffness losses of the crack rotor system for a wide range of the crack depth. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Rotor vibrations caused by large time-varying base motion are of considerable importance as there are a good number of rotors, e.g., the ship and aircraft turbine rotors, which are often subject to excitations, as the rotor base, i.e. the vehicle, undergoes large time varying linear and angular displacements as a result of different maneuvers. Due to such motions of the base, the equations of vibratory motion of a flexible rotor–shaft relative to the base (which forms a non-inertial reference frame) contains terms due to Coriolis effect as well as inertial excitations (generally asynchronous to rotor spin) generated by different system parameters. Such equations of motion are linear but time-varying in nature, invoking the possibility of parametric instability under certain frequency–amplitude combinations of the base motion. An investigation of active vibration control of an unbalanced rotor–shaft system on moving bases is attempted in this work with electromagnetic control force provided by an actuator consisting of four electromagnetic exciters, placed on the stator in a suitable plane around the rotor–shaft. The actuator does not levitate the rotor or facilitate any bearing action, which is provided by the conventional suspension system. The equations of motion of the rotor–shaft continuum are first written with respect to the non-inertial reference frame (the moving base in this case) including the effect of rotor internal damping. A conventional model for the electromagnetic exciter is used. Numerical simulations performed on the flexible rotor–shaft modelled using beam finite elements shows that the control action is successful in avoiding the parametric instability, postponing the instability due to internal material damping and reducing the rotor response relative to the rigid base significantly, with sufficiently low demand of control current in comparison with the bias current in the actuator coils.  相似文献   

8.
林富生  孟光  E·韩 《应用数学和力学》2004,25(10):1042-1052
在Jeffcott转子的开闭裂纹及方波模型基础上,建立了飞行器内裂纹转子系统的运动模型.数值研究表明:当飞行器以不同的等速度飞行时,转子轴与水平面之间夹角的变化将造成重力分量的变化,从而使转子运动在周期解、拟周期或浑沌状态之间变化,而且出现非线性现象的转速比、刚度变化比等参数的范围、进入和退出浑沌的路径、响应中的频率成份也会发生变化.飞行器的飞行速度变化还会改变裂纹转子响应的稳定性.飞行器等速飞行后的加速过程将引起转子振幅的突升及其后的下降,而且会使裂纹转子系统响应可能在不同的非线性状态下交替改变.  相似文献   

9.
The presence of a crack in a rotor introduces a local flexibility which affects its dynamic response. Moreover, the crack may open and close during the vibration period. The crack status is a function of time and also depends on the rotational speed and the vibration amplitude of the rotor. This nonlinear case is still a challenging research topic especially in the field of closing crack in the rotating shaft. A cohesive zone model is developed in order to analyze the stiffness of a crack in a rotating shaft. The proposed expression will be compared to three different crack models, namely, a breathing crack model, a switching crack model and an open crack model. Moreover, a cohesive law to predict and to analyse the stress at the crack tip is presented. The numerical model is implemented using a finite element formulation. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Jonas Fischer  Jens Strackeljan 《PAMM》2008,8(1):10371-10372
Viscous internal damping in joints of high speed rotor systems causes instabilities above a certain frequency of revolution. In the majority of cases a nonlinearity adjusts the stability margin towards higher frequencies. In this paper an analytical solution of a nonlinear four degrees of freedom rotor model with internal damping is proposed, which enables to clearly analyse the influence of shaft stiffness, connection stiffness, rotor mass and shaft mass. The steady state solution of the unbalance case and the stability boundaries are deduced analytically. The stabilizing effect of the nonlinearity is shown. The analytical solutions are in good agreement with numerical results obtained by FERAN, a rotor dynamic simulation tool. A model, representing the rotor–shaft connection with an o–ring has been analyzed by a hydro pulse rig. Beneath the linear way, two further approaches to describe the measured hysteresis, a cubic and a bilinear force law are shown in the paper. The different analytical and numerical results for the whole rotor system with these three approaches are compared. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
本以裂纹的翘曲位移间断为基本未知函数,把带裂纹圆柱体的扭转问题化为求解一组强奇性积分方程,并利用数值法,对星形及其不同形状裂纹圆柱体的抗扭刚度和应力强度因子作了数值计算,计算结果令人满意。  相似文献   

12.
The paper is aimed to examine dynamic behaviors of a dual-disc bearing-rotor system in multi-fault state, and the crack detection based on the orbit morphological characteristics and vibration responses is proposed. Dynamic response and vibration signal analysis are two significant studies in rotor system. Most researchers have simulated the nonlinear dynamics and analyzed the fault signal using various methods separately. However, the fault feature from vibration signal is tightly connected with the dynamic mechanism in the rotor system, especially in rotor system with coupling multi-fault. In the paper, the dynamic model of the dual-disc bearing-rotor system is established, which takes into account the effects of crack, rub-impact and nonlinear oil-film forces. The vibration responses and the effect of crack on dual-disc rotor system with multi faults are investigated. The existence of crack and the coupling effect of multi faults enrich dynamic behavior of the dual-disc bearing-rotor system, and the response near the 1/2 subcritical speed provides a criterion for crack detection. Experiment investigation is attempted for the first time, which is based on the changes of crack depth and rotation speed for multi-fault dual-disc rotor system. The analysis of the dynamic response and the orbit morphological characteristics from experiment can effectively detect the crack information.  相似文献   

13.
Conclusions Theoretical analysis and tests performed on rotors with composite shaft show that there is a sufficiently wide rotation stability region in the rotor parameter space despite comparatively high damping of a polymeric composite with respect to steel. Optimum parameters of the shaft (lay-up, thickness) and bearing (radial stiffness, damping) can be found within this region for each given rotor ensuring a low vibration level at critical frequencies.If rotor system parameters are far enough from the instability threshold, maximum vibration level is observed when rotor passes the first eigenfrequency zone. Further increase of rotation frequency leads to a rotor self-centering, and vibration level does not change passing the second eigenfrequency zone. The rotor response is not sensitive to small changes in rotor system parameters. If rotor system parameters are close to the instability threshold, vibration level at the second eigenfrequency dominates, and a small variation of bearing parameters causes significant changes in the vibration level.Translated from Mekhanika Kompozitnykh Materialov, Vol. 31, No. 2, pp. 227–240, March–April, 1995.  相似文献   

14.
A rotor–active magnetic bearing (AMB) system subjected to a periodically time-varying stiffness with quadratic and cubic non-linearities under multi-parametric excitations is studied and solved. The method of multiple scales is applied to analyze the response of two modes of a rotor–AMB system with multi-parametric excitations and time-varying stiffness near the simultaneous primary and internal resonance. The stability of the steady state solution for that resonance is determined and studied using Rung–Kutta method of fourth order. It is shown that the system exhibits many typical non-linear behaviors including multiple-valued solutions, jump phenomenon, hardening and softening non-linearities and chaos in the second mode of the system. The effects of the different parameters on the steady state solutions are investigated and discussed also. A comparison to published work is reported.  相似文献   

15.
It is well known that either the asymmetric disk or transverse crack brings parametric inertia (or stiffness) excitation to the rotor-bearing system. When both of them appear in a rotor system, the parametric instability behaviors have not gained sufficient attentions. Thus, the effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk is studied. First, the finite element equations of motion are established for the asymmetric rotor system. Both the open and breathing transverse cracks are taken into account in the model. Then, the discrete state transition matrix (DSTM) method is introduced for numerically acquiring the instability regions. Based upon these, some computations for a practical asymmetric rotor system with open or breathing transverse crack are conducted, respectively. Variations of the primary and combination instability regions induced by the asymmetric disk with the crack depth are observed, and the effect of the orientation angle between the crack and asymmetric disk on various instability regions are discussed in detail. It is shown that for the asymmetric angle around 0, the existence of transverse (either open or breathing) crack has attenuation effect upon the instability regions. Under certain crack depth, the instability regions could be vanished by the transverse crack. When the asymmetric angle is around π/2, increasing the crack depth would enhance the instability regions.  相似文献   

16.
The initiation of multiple cracks in a fiber/matrix composite subjected to a torsional load is studied. The composite is made of a cylindrical fiber surrounded by a matrix of different properties. A periodic array of cracks is assumed to exist in the fiber along its central axis. A dual integral equation is formulated in terms of equivalent crack face loads. The effects of crack spacing on the crack tip field intensity factor, the stress, the torque, and the equivalent stiffness of the fiber are investigated and displayed graphically.  相似文献   

17.
This study performs a coupled torsion–bending vibration responses of a gear-rotor-bearing system, which has taken time varying mesh stiffness, nonlinear bearing force and gear eccentricity into account. A 16 DOF nonlinear dynamic model of gear-rotor-rolling bearing transmission system with bending–torsion coupling is established to obtain the dynamic response to the changes of different parameters. Based on the Runge–Kutta numerical method, the dynamics of the system is investigated, which describes torsional and bending vibration properties of the system more comprehensively. The vibration responses of the gear-rotor-bearing system are discussed, and the effects of gear eccentricity and rotational speed on the system are investigated in detail. The results show that gear eccentricity and rotational speed have influences on the meshing state of gear teeth, the vibration amplitudes, the frequency multiplication and random frequency components. When the system is in a lower rotational speed, the eccentricity has greater effects on the vibration response. The proposed model and numerical results provide a useful source of reference for engineers in designing and vibration controlling such systems.  相似文献   

18.
A mathematical model incorporating the higher order deformations in bending is developed and analyzed to investigate the nonlinear dynamics of rotors. The rotor system considered for the present work consists of a flexible shaft and a rigid disk. The shaft is modeled as a beam with a circular cross section and the Euler Bernoulli beam theory is applied with added effects such as rotary inertia, gyroscopic effect, higher order large deformations, rotor mass unbalance and dynamic axial force. The kinetic and strain (deformation) energies of the rotor system are derived and the Rayleigh–Ritz method is used to discretize these energy expressions. Hamilton’s principle is then applied to obtain the mathematical model consisting of second order coupled nonlinear differential equations of motion. In order to solve these equations and hence obtain the nonlinear dynamic response of the rotor system, the method of multiple scales is applied. Furthermore, this response is examined for different possible resonant conditions and resonant curves are plotted and discussed. It is concluded that nonlinearity due to higher order deformations significantly affects the dynamic behavior of the rotor system leading to resonant hard spring type curves. It is also observed that variations in the values of different parameters like mass unbalance and shaft diameter greatly influence dynamic response. These influences are also presented graphically and discussed.  相似文献   

19.
Mehmet Haskul  Murat Kısa 《PAMM》2015,15(1):129-130
Vibration analysis of cracked beams having linearly varying cross-sections both in thickness and width was investigated. A computer program using the finite element method has been written to find the dynamical characteristics (natural frequencies and mode shapes) of the cracked beam. The cracked section in the beam has been modeled by a massless spring whose flexibility depens on the local flexibility induced by the crack. The stiffness of spring has been derived from the linear elastic fracture mechanics theory as the inverse of the compliance matrix calculated using stress intensity factors and strain energy release rate expression. Some examples have been given to explain the proposed method and investigate the effects of the depth and location of cracks on the natural frequencies and mode shapes. The results of current study and those in the literature are compared and good agreements have been found. Consequently it is showed that proposed method is reliable and simple. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Chaos caused by fatigue crack growth   总被引:2,自引:0,他引:2  
The nonlinear dynamic responses including chaotic oscillations caused by a fatigue crack growth are presented. Fatigue tests have been conducted on a novel fatigue-testing rig, where the loading is generated from inertial forces. The nonlinearity is in the form of discontinuous stiffness caused by the opening and closing of a growing crack. Nonlinear dynamic tools such as Poincaré maps and bifurcation diagrams are used to unveil the global dynamics of the system. The results obtained indicate that fatigue crack growth strongly influences the dynamic response of the system leading to chaos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号