首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on two-dimensional tensor product B-spline wavelet on the interval (BSWI), a class of C0 type plate elements is constructed to solve plane elastomechanics and moderately thick plate problems. Instead of traditional polynomial interpolation, the scaling functions of two-dimensional tensor product BSWI are employed to form the shape functions and construct BSWI elements. Unlike the process of direct wavelets adding in the previous work, the elemental displacement field represented by the coefficients of wavelets expansions is transformed into edges and internal modes via the constructed transformation matrix in this paper. The method combines the versatility of the conventional finite element method (FEM) with the accuracy of B-spline functions approximation and various basis functions for structural analysis. Some numerical examples are studied to demonstrate the proposed method and the numerical results presented are in good agreement with the closed-form or traditional FEM solutions.  相似文献   

2.
The dynamics and diagnosis of cracked rotor have been gaining importance in recent years. In the present study a model-based crack identification method is proposed for estimating crack location and size in shafts. The rotor system has been modeled using finite element method of B-spline wavelet on the interval (FEM BSWI), while the crack is considered through local stiffness change. Based on Rayleigh beam theory, the influences of rotatory inertia on the flexural vibrations of the rotor system are examined to construct BSWI Rayleigh beam element. The slender shaft and stiffness disc are modeled by BSWI Rayleigh–Euler beam element and BSWI Rayleigh–Timoshenko beam element, respectively. Then the crack identification forward and inverse problems are solved by using surface-fitting technique and contour-plotting method. The experimental examples are given to verify the validity of the BSWI beam element for crack identification in a rotor system. From experimental results, the new method can be applied to prognosis and quantitative diagnosis of crack in a rotor system.  相似文献   

3.
The B-spline variant of the finite element method (FEM) is tested in one-dimensional discontinuous elastic wave propagation. The B-spline based FEM (called Isogeometric analysis IGA) uses spline functions as testing and shape functions in the Galerkin continuous content. Here, the accuracy of stress distribution and spurious oscillations of the B-spline based FEM are studied in numerical modeling of one-dimensional propagation of stress discontinuities in a bar, where the analytical solution is known. For time integration, the Newmark method, implicit form of the generalized-α method, the central difference method and the predictor/multi-corrector method are tested and compared. The use of lumped and consistent mass matrices in explicit time integration is discussed. Due to accuracy, the consistent mass matrix is preferred in explicit time integration in IGA.  相似文献   

4.
In this paper, an efficient numerical method for solving the linear fractional Klein-Gordon equation (LFKGE) is introduced. The proposed method depends on the Galerkin finite element method (GFEM) using quadratic B-spline base functions and replaces the Caputo fractional derivative using $L2$ discretization formula. The introduced technique reduces LFKGE to a system of algebraic equations, which solved using conjugate gradient method. The study the stability analysis to the approximation obtained by the proposed scheme is given. To test the accuracy of the proposed method we evaluated the error norm $L_{2}$. It is shown that the presented scheme is unconditionally stable. Numerical example is given to show the validity and the accuracy of the introduced algorithm.  相似文献   

5.
Polynomial and rational wave solutions of Kudryashov-Sinelshchikov equation and numerical simulations for its dynamic motions are investigated. Conservation flows of the dynamic motion are obtained utilizing multiplier approach. Using the unified method, a collection of exact solitary and soliton solutions of Kudryashov-Sinelshchikov equation is presented. Collocation finite element method based on quintic B-spline functions is implemented to the equation to evidence the accuracy of the proposed method by test problems. Stability analysis of the numerical scheme is studied by employing von Neumann theory. The obtained analytical and numerical results are in good agreement.  相似文献   

6.
A Bubnov-Galerkin finite element method with quintic B-spline functions taken as element shape and weight functions is presented for the solution of the KdV equation. To demonstrate the accuracy, efficiency and reliability of the method three experiments are undertaken for both the evolution of a single solitary wave and the interaction of two solitary waves. The numerical results are compared with analytical solutions and the numerical results in the literature. It is shown that the method presented is accurate, efficient and can be used at small times when the analytical solution is not known.  相似文献   

7.
In this paper, for the numerical solution of Burgers’ equation, we give two B-spline finite element algorithms which involve a collocation method with cubic B-splines and a Galerkin method with quadratic B-splines. In time discretization of the equation, Taylor series expansion is used. In order to verify the stabilities of the purposed methods, von-Neumann stability analysis is employed. To see the accuracy of the methods, L2 and L error norms are calculated and obtained results are compared with some earlier studies.  相似文献   

8.
样条有限元   总被引:31,自引:1,他引:30  
石钟慈 《计算数学》1979,1(1):50-72
本文用三次B样条变分方法解规则区域上板梁组合弹性结构的平衡问题.推导出了适用于各种边界条件的统一计算格式,便于在计算机上实现.与通常有限元相比,具有计算量少、精确度高等显著特点.文中对自然边界条件作为约束条件的影响给予了考虑,并以板的弯曲问题为例说明影响极微.给出了几个数值的例子.  相似文献   

9.
一种高精度的裂纹奇异单元   总被引:1,自引:0,他引:1  
基于广义伽辽金法的多变量有限元算法,增加了连续体力学有限元模型建立的灵活性.本文利用它,通过数值试验的对比建立了一种高精度的含奇异性的裂纹单元,并对多变量奇异元的构成进行了探讨.  相似文献   

10.
李宏  孙萍  尚月强  罗振东 《计算数学》2012,34(4):413-424
本文利用有限体积元方法研究二维粘弹性方程, 给出一种时间二阶精度的全离散化有限体积元格式, 并给出这种全离散化有限体积元解的误差估计, 最后用数值例子验证数值结果与理论结果是相吻合的. 通过与有限元方法和有限差分方法相比较, 进一步说明了全离散化有限体积元格式是求解二维粘弹性方程数值解的最有效方法之一.  相似文献   

11.
In this article, we study the superconvergence analysis of conforming bilinear finite element method (FEM) for nonlinear Joule heating equations. Based on the rigorous estimates together with high accuracy analysis of this element, mean value technique and interpolation postprocessing approach, the superclose and superconvergent estimates about the related variables in H1‐norm are derived for semidiscrete and a linearized backward Euler fully discrete schemes, which extends the results of optimal estimates obtained for conforming FEMs in the previous literature. At last, a numerical experiment is performed to verify the theoretical analysis.  相似文献   

12.
In this study, the numerical behavior of the one-dimensional Regularized Long Wave (RLW) equation has been sought by the Strang splitting technique with respect to time. For this purpose, cubic B-spline functions are used with the finite element collocation method. Then, single solitary wave motion, the interaction of two solitary waves and undular bore problems have been studied and the effectiveness of the method has been investigated. The new results have been compared with those of some of the previous studies available in the literature. The stability analysis has also been taken into account by the von Neumann method.  相似文献   

13.
A proper orthogonal decomposition (POD) technique is used to reduce the finite volume element (FVE) method for two-dimensional (2D) viscoelastic equations. A reduced-order fully discrete FVE algorithm with fewer degrees of freedom and sufficiently high accuracy based on POD method is established. The error estimates of the reduced-order fully discrete FVE solutions and the implementation for solving the reduced-order fully discrete FVE algorithm are provided. Some numerical examples are used to illustrate that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order fully discrete FVE algorithm is one of the most effective numerical methods by comparing with corresponding numerical results of finite element formulation and finite difference scheme and that the reduced-order fully discrete FVE algorithm based on POD method is feasible and efficient for solving 2D viscoelastic equations.  相似文献   

14.
This paper presents the comparison of physical spline finite element method (PSFEM), in which differential equations are incorporated into interpolations of basic elements, with least-squares finite element method (LSFEM) and mixed Galerkin finite element method (MGFEM) on the numerical solution of one dimensional Helmholtz equation applied to an acoustic scattering problem. Firstly, all three methods are explained in detail and then it is shown that PSFEM reaches higher precision in a shorter time with fewer nodes than the other methods. It is also observed that this method is well suited for high frequency acoustic problems. Consequently, the results of PSFEM point out better efficiency in terms of number of unknowns and accuracy level.  相似文献   

15.
The current paper proposes the formulation of beam elements using B-spline wavelet on the interval based wavelet finite element method by incorporating von Kármán nonlinear strains. Formulation is proposed for both Euler–Bernoulli beam theory and Timoshenko beam theory. A background cell based Gauss quadrature is proposed for numerical integration. Numerical examples are solved for transverse deflections and stresses in axial direction, and are compared with the existing converged results from finite element method. The issues of membrane and shear locking for the proposed elements are examined and solution techniques are suggested to overcome the issues.  相似文献   

16.
This paper aims to develop a novel numerical approach on the basis of B-spline collocation method to approximate the solution of one-dimensional and two-dimensional nonlinear stochastic quadratic integral equations. The proposed approach is based on the hybrid of collocation method, cubic B-spline, and bi-cubic B-spline interpolation and Itô approximation. Using this method, the problem solving turns into a nonlinear system solution of equations that is solved by a suitable numerical method. Also, the convergence analysis of this numerical approach has been discussed. In the end, examples are given to test the accuracy and the implementation of the method. The results are compared with the results obtained by other methods to verify that this method is accurate and efficient.  相似文献   

17.
A collocation method is described which obtains approximate solutions to quasilinear parabolic problems on a general two-dimensional domain. The method is best suited for obtaining robust solutions to smooth problems with the accuracy required in most engineering applications. The solution is obtained in terms of a finite element, B-spline basis. An interactive computer graphics system is used for both problem formulation and the subsequent display of selected results. The theoretical basis for the method is discussed, and some typical computational results are presented.  相似文献   

18.
19.
A second order accurate method in the infinity norm is proposed for general three dimensional anisotropic elliptic interface problems in which the solution and its derivatives, the coefficients, and source terms all can have finite jumps across one or several arbitrary smooth interfaces. The method is based on the 2D finite element-finite difference (FE-FD) method but with substantial differences in method derivation, implementation, and convergence analysis. One of challenges is to derive 3D interface relations since there is no invariance anymore under coordinate system transforms for the partial differential equations and the jump conditions. A finite element discretization whose coefficient matrix is a symmetric semi-positive definite is used away from the interface; and the maximum preserving finite difference discretization whose coefficient matrix part is an M-matrix is constructed at irregular elements where the interface cuts through. We aim to get a sharp interface method that can have second order accuracy in the point-wise norm. We show the convergence analysis by splitting errors into several parts. Nontrivial numerical examples are presented to confirm the convergence analysis.  相似文献   

20.
In this report, we give a semi‐discrete defect correction finite element method for the unsteady incompressible magnetohydrodynamics equations. The defect correction method is an iterative improvement technique for increasing the accuracy of a numerical solution without applying a grid refinement. Firstly, the nonlinear magnetohydrodynamics equations is solved with an artificial viscosity term. Then, the numerical solutions are improved on the same grid by a linearized defect‐correction technique. Then, we give the numerical analysis including stability analysis and error analysis. The numerical analysis proves that our method is stable and has an optimal convergence rate. In order to show the effect of our method, some numerical results are shown. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号