首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Finite element analysis of the clamp band joint   总被引:1,自引:0,他引:1  
In this paper, the clamp band joint commonly used to connect cylindrical shells with end flanges is modeled using the finite element analysis software ANSYS. The joint model is validated by a series of static experiments. Then the response of the joint components to the preload and the axial load is analyzed in detail, from which the axial load capability, the axial stiffness and the damping characteristics of the clamp band joint are discussed. Finally, parametric studies are carried out to investigate the effects of the preload, the wedge angle, the friction coefficient, and the number and size of the V-segment on the behavior of the clamp band joint. This paper presents the general mechanical behavior of the clamp band joint subjected to axial loads.  相似文献   

2.
This paper investigates the variability of dynamic responses of a beam resting on an elastic foundation, which is subjected to a vehicle with uncertain parameters, such as random mass, stiffness, damping of the vehicle and random fields of mass density, and the elastic modulus of the beam and stiffness of elastic foundation. The vehicle is modeled as a two-degree-of-freedom spring-damper-mass system. The equations of motion of the beam was constructed using a finite element method. The mass and elastic properties of the beam, and the stiffness of foundation are assumed to be Gaussian random fields and were simulated by the spectral represent method. Masses, stiffness of the spring, and the damping coefficient of the vehicle are assumed as Gaussian random variables. The numerical analyses were performed using the finite element method (FEM) in conjunction with the Monte Carlo simulation (MCS). The variability of dynamic responses of the beam were investigated with various cases of random parameters. For each sample, the equations of motions were solved with the Wilson-q integral method to find dynamic responses. The influence of random system parameters and their correlation on the response variability is discussed in detail.  相似文献   

3.
We consider the dynamic responses of a beam with a frictional joint. The frictional force at the joint is modeled using the Coulomb friction model. The frictional force at the joint makes the nature of the boundary conditions at the joint uncertain. Therefore, this problem represents a type of nonlinear problems where the boundary conditions are coupled to the solutions. Using numerical integration of the resulting differential equations obtained by combining the finite element method and the Lagrange equations, we study the steady-state solutions of the system to sinusoidal excitations. We explore the dependence of the system responses to various parameters including the frictional force, the forcing frequency and the forcing amplitude. A result of special interest is the existence of an optimum friction force if the frictional joint is used to control the system response amplitude. We also examine the ways that friction affects the resonance frequency of the structure. Experiments are carried out, which agree qualitatively with the numerical results.  相似文献   

4.
In this paper, a transient dynamic analysis of the powder compaction process is simulated by a large displacement finite element method based on a total and updated Lagrangian formulation. A combination of the Mohr–Coulomb and elliptical yield cap model, which reflects the stress state and degree of densification, is applied to describe the constitutive model of powder materials. A Coulomb friction law and a plasticity theory of friction in the context of an interface element formulation are employed in the constitutive modelling of the frictional behaviour between the die and powder. Finally, the powder behaviour during the compaction of a plain bush, a rotational flanged and a shaped tip component are analysed numerically. It is shown that the updated Lagrangian formulation, using a combination of the Mohr–Coulomb and elliptical cap model, can be effective in simulating metal powder compaction.  相似文献   

5.
The paper deals with cyclic periodic structures modelling bladed disk assemblies of blades with friction elements for vibration damping. These elements placed between adjacent blades reduce the vibration amplitudes by means of dry friction resulting from centrifugal forces acting on the elements and relative displacements of the blades. However, the application of these friction elements results in an additional dynamical coupling which together with mistuning of some system parameters (e.g., blade eigenfrequency or contact parameters) may cause localization of vibration. In the present paper a linear approximation of such a system is investigated. The structure composed of cyclic periodic cells modelled each as a clamped-free beam interacting with each other by means of viscoelastic elements of complex stiffness is applied for dynamic system analysis. In case of free vibrations as well as in case of steady-state dynamic response to a harmonic pressure field, a perfect periodic structure and the structures with periodically mistuned parameters (blade eigenfrequencies and contact parameters) are studied. Some regularities in the dynamic response of the systems with mistuning have been noticed. Despite the fact that only a linear approximation has been used, the results and conclusions can be applied for models which describe the blade interaction in a nonlinear way.  相似文献   

6.
A mathematical model for both axial and transverse motions of two beams with cylindrical cross-sections coupled through a joint is presented and analyzed. The motivation for this problem comes from the need to accurately model damping and joint dynamics for the next generation of inflatable/rigidizable space structures. Thermo-elastic damping is included in the two beams and the motions are coupled through a joint which includes an internal moment. Thermal response in each beam is modeled by two temperature fields. The first field describes the circumferentially averaged temperature along the beam, and is linked to the axial deformation of the beam. The second describes the circumferential variation and is coupled to transverse bending. The resulting equations of motion consist of four, second-order in time, partial differential equations, four, first-order in time, partial differential equations, four second order ordinary differential equations, and certain compatibility boundary conditions. The system is written as an abstract differential equation in an appropriate Hilbert space, consisting of function spaces describing the distributed beam deflections and temperature fields, and a finite-dimensional space that projects important features at the joint boundary. Semigroup theory is used to prove that the system is well-posed, and that with positive damping parameters the resulting semigroup is exponentially stable. Steady states are characterized and several numerical approximation results are presented. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
A non-linear control law is proposed to suppress the vibrations of the first mode of a cantilever beam when subjected to primary and principal parametric excitations. The dynamics of the beam are modeled with a second-order non-linear ordinary-differential equation. The model accounts for viscous damping air drag, and inertia and geometric non-linearities. A control law based on quantic velocity feedback is proposed. The method of multiple scales method is used to derive two-first ordinary differential equations that govern the evolution of the amplitude and phase of the response. These equations are used to determine the steady state responses and their stability. Amplitude and phase modulation equations as well as external force–response and frequency–response curves are obtained. Numerical simulations confirm this scenario and detect chaos and unbounded motions in the instability regions of the periodic solutions.  相似文献   

8.
9.
This paper deals with the numerical solution of the wheel - rail rolling contact problems. The unilateral dynamic contact problem between a rigid wheel and a viscoelastic rail lying on a rigid foundation is considered. The contact with the generalized Coulomb friction law occurs at a portion of the boundary of the contacting bodies. The Coulomb friction model where the friction coefficient is assumed to be Lipschitz continuous function of the sliding velocity is assumed. Moreover Archard's law of wear in the contact zone is assumed. This contact problem is governed by the evolutionary variational inequality of the second order. Finite difference and finite element methods are used to discretize this dynamic contact problem. Numerical examples are provided. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
This paper presents the probabilistic analysis of concrete-faced rockfill (CFR) dams according to the Monte Carlo Simulation (MCS) results which are obtained through the Response Surface Method (RSM). ANSYS finite element program is used to get displacement and principal stress components. First of all, some parametric studies are performed according to the simple and representative finite element model of dam body to obtain the optimum approximate model. Secondly, a sensitivity analysis is performed to get the most effective parameters on dam response. Then, RSM is used to obtain the approximate function through the selected parameters. After the performed analyses, star experimental design with quadratic function without mixed terms according to the k = 1 is determined as the most appropriate model. Finally, dam-foundation-reservoir interaction finite element model is constituted and probabilistic analyses are performed with MCS using the selected parameters, sampling method, function and arbitrary factor under gravity load for empty and full reservoir conditions. Geometrically and materially nonlinearity are considered in the analysis of dam-foundation-reservoir interaction system. Reservoir water is modeled by fluid finite elements based on the Lagrangian approach. Structural connections are modeled as welded contact and friction contact based on Coulomb’s friction law. Probabilistic displacements and stresses are presented and compared with deterministic results.  相似文献   

11.
波浪、海洋土参数对海床稳定性影响   总被引:6,自引:0,他引:6  
基于Yamamoto的多孔弹性介质模型,研究了波生底床的稳定性.通过给出的有限深底床下土响应分析解,针对三种土质底床,讨论了主要波参数和土参数对这些底床稳定性的影响.与其他土模型计算结果进行了比较,分析了海洋土内部Coulomb摩擦因素的影响.  相似文献   

12.
The paper deals with the numerical solution of the quasi-variational inequality describing the equilibrium of an elastic body in contact with a rigid foundation under Coulomb friction. After a discretization of the problem by mixed finite elements, the duality approach is exploited to reduce the problem to a sequence of quadratic programming problems with box constraints, so that efficient recently proposed algorithms may be applied. A new variant of this method is presented. It combines fixed point with block Gauss–Seidel iterations. The method may be also considered as a new implementation of fixed point iterations for a sequence of problems with given friction. Results of numerical experiments are given showing that the resulting algorithm may be much faster than the original fixed point method and its efficiency is comparable with the solution of frictionless contact problems.  相似文献   

13.
The response of concrete slab on Concrete-Faced Rockfill (CFR) dams is very important. This study investigates the reliability of the concrete slab on a CFR dam by the improved Rackwitz–Fiessler method under static loads. For this purpose, ANSYS finite element analysis software and FERUM reliability analysis program are combined with direct coupled method and response surface method. Reliability index and probability of failure of the concrete are computed in the all critical points of the concrete slab by dam height. This study is also expanded for the reliability of CFR dams including different concrete slab thickness. In addition to the linear behavior, geometrically and materially non-linear responses of the dam are considered in the finite element analysis which is performed with reliability analysis. The Drucker–Prager method and the multi linear kinematic hardening method are, respectively, used for concrete slab and for rockfill and foundation rock. Finite element model used in the analyses includes dam–reservoir–foundation interaction. Reservoir water is modeled by the Lagrangian approach. Welded and friction contact based on the Coulomb’s friction law are considered in the joints of the dam. One-dimensional two noded contact elements are used to define friction. The self-weight of the dam and the hydrostatic pressure of the reservoir water are considered in the numerical solutions. According to this study, hydrostatic pressure, nonlinear response of the rockfill and the decrease in the concrete slab thickness reduce the reliability of the concrete slab of the CFR dam. Besides, the CFR dam models including friction are safer than the models including welded contact in the joints.  相似文献   

14.
Various factors may subject buildings to shock which continues in their structure and is perceived by the people living in them as noticeable vibrations or noise. In this context, polyurethane (PUR) foams, which have been developed to isolate vibrations, have shown to be very effective in practical use. However, whereas static properties of open-cell structures have already been determined numerically in good agreement to experimental results, cf. [1], there are hardly any investigations on the dynamical properties characterizing acoustic damping. In order to validate experimental measurements of eigenfrequencies for different PUR foam specimen we present here a strategy to reproduce the foam behavior numerically. In doing so, PUR foams are modeled using a three dimensional Voronoi-tessellation technique. The resulting Voronoi cells correspond to open pores and are scaled in such a way that the volume ratio between the pores and material matches the given PUR foam. For finite element analysis the connections between the cells are modeled as beam elements, the beam shape follows Bezièr curves. The generated model is analyzed with a finite element software and the dynamical parameters are determined. The numerical results are compared to our experimental data. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
This paper discusses the analytical elastostatic stiffness modeling of parallel manipulators (PMs) considering the compliance of the link and joint. The proposed modeling is implemented in three steps: (1) the limb constraint wrenches are formulated based on screw theory; (2) the strain energy of the link and the joint is formulated using material mechanics and a mapping matrix, respectively, and the concentrated limb stiffness matrix corresponding to the constraint wrenches is obtained by summing the strain energy of the links and joints in the limb; and (3) the overall stiffness matrix is assembled based on the deformation compatibility equations. The strain energy factor index (SEFI) is adopted to describe the influence of the elastic components on the stiffness performance of the mechanism. Matrix structural analysis (MSA) using Timoshenko beam elements is applied to obtain analytical expressions for the compliance matrices of different joints through a three-step process: (1) formulate the element stiffness equation for each element; (2) extend the element stiffness equation to obtain the element contribution matrix, allowing the extended overall stiffness matrix to be obtained by summing the element contribution matrices; and (3) determine the stiffness matrices of joints by extracting the node stiffness matrix from the extended overall stiffness matrix and then releasing the degrees of freedom of twist. A comparison with MSA using Euler–Bernoulli beam elements demonstrates the superiority of using Timoshenko beam elements. The 2PRU-UPR PM is presented to illustrate the effectiveness of the proposed approach. Finally, the global SEFI and scatter matrix are used to identify the elastic component with the weakest stiffness performance, providing a new approach for effectively improving the stiffness performance of the mechanism.  相似文献   

16.
As the deflection of a buried beam subjected to ground settlement is not consistent with the ground displacement, an analytical model is introduced in this study for a buried beam on a tensionless foundation subjected to differential settlement. The buried beam is divided into three segments: the left semi-infinite foundation beam, the right semi-infinite foundation beam, and the middle finite beam separated from the ground. Based on the theory of semi-infinite foundation beams, equations for the response of left and right semi-infinite segment beams are given. Explicit equations are proposed for the response of the middle segment beam; these are combined with the continuous conditions at the segment junctions, and the physical implications of the equation parameters are illustrated. The analytical approach taken in this study is then compared with, and verified against, the methods used in the existing literature. The mechanical state of a buried beam subjected to ground settlement is closely related to the foundation stiffness factor, the flexural stiffness of the beam, the characteristics of the ground settlement, and the vertical earth pressure. When the deformation coefficient is relatively large or ground settlement is relatively narrow, the buried beam may be in the partial contacting state. With an increase in the width and amplitude of ground settlement curve, the foundation stiffness factor, and the different vertical earth pressure between the ground settlement and non-settlement areas, the bending moment and shearing force of buried beams increase.  相似文献   

17.
利用弹性悬臂梁模态叠加构造出约束阻尼悬臂梁的振动模态,基于Lagrange方程推导出了约束阻尼悬臂梁的控制方程,求解了在集中力突然卸载的情况下约束阻尼悬臂梁的动力响应.计算并测试了一系列铝合金约束阻尼悬臂梁模型的振动频率和瞬态响应,分析了阻尼层材料参数对铝合金约束悬臂梁瞬态响应时间的影响.采用了解析法以及实验法两种方法,结果表明,所采用的方法是可靠的.  相似文献   

18.
A beam segment element for dynamic analysis of large aqueducts   总被引:2,自引:0,他引:2  
Large aqueduct structure is a complex structure that is commonly used in hydraulic engineering, especially in large-scale water conveying projects. The analysis of dynamic response for an aqueduct structure is necessary if the aqueduct is built in an earthquake area. Traditional 3D finite element analysis is time consuming and the existing simplified response method cannot take into account all the effects, such as the bending-torsion coupling effect and the constrained torsion, of the deformations of the thin wall structure of the aqueduct body. For this special structure, a simple and yet accurate model for dynamic analysis is needed. In this paper, a beam segment element is developed and used for the calculation of dynamic response for aqueduct structures. With the frame of the aqueduct being modeled using beam element, the proposed model can calculate the dynamic response of the whole aqueduct structures. Results are compared with that of a general purpose finite element analysis software using 3D finite element model. Good agreement is achieved between the two models. However, the proposed model needs less elements and much less computing time.  相似文献   

19.
20.
In this work, a detailed three-dimensional (3D) nonlinear finite element model is developed to study the response and predict the behavior of precast hybrid beam–column connection subjected to cyclic loads that was tested at the National Institute of Standards and Technology (NIST) laboratory. The precast joint is modeled using 3D solid elements and surface-to-surface contact elements between the beam/column faces and interface grout in the vicinity of the connection. The model takes into account the pre-tension effect in the post-tensioning strand and the nonlinear material behavior of concrete. The model response is compared with experimental test results and yielded good agreement at all stages of loading. Fracture of the mild-steel bars resulted in the failure of the connection. In order to predict this failure mode, stress and strain fields in the mild-steel bars at the beam–column interface were generated from the analyzed model. Such fields of stresses and strains are hard to measure in experimental testing. In addition, the magnitude of the force developed in the post-tensioning steel tendon was also monitored and it was observed that it did not yield during the entire loading history. Successful finite element modeling will provide a practical and economical tool to investigate the behavior of such connections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号