首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The main goal of this paper is to give two ways to estimate the needed parameters in order to obtain the condition number of S.S.O.R. preconditioned matrices, namely, the algebraic matricial formulation of convexity Riesz theorem and the tridiagonal Fourier analysis. The improvement with respect to Axelsson's approach is explicitly given. Estimations of the condition number in the case of A.D.I. preconditioning is also considered.  相似文献   

2.
In this paper, a complex parameter is employed in the Hermitian and skew-Hermitian splitting (HSS) method (Bai, Golub and Ng: SIAM J. Matrix Anal. Appl., 24(2003), 603-626) for solving the complex linear system $Ax=f$. The convergence of the resulting method is proved when the spectrum of the matrix $A$ lie in the right upper (or lower) part of the complex plane. We also derive an upper bound of the spectral radius of the HSS iteration matrix, and an estimated optimal parameter $α$(denoted by $α_{est}$) of this upper bound is presented. Numerical experiments on two modified model problems show that the HSS method with $α_{est}$has a smaller spectral radius than that with the real parameter which minimizes the corresponding upper bound. In particular, for the 'dominant' imaginary part of the matrix $A$, this improvement is considerable. We also test the GMRES method preconditioned by the HSS preconditioning matrix with our parameter $α_{est}$.  相似文献   

3.
The spectral radius of the Jacobi iteration matrix plays an important role to estimate the optimum relaxation factor, when the successive overrelaxation (SOR) method is used for solving a linear system. The specific systems are finite difference forms of the Laplace equation satisfied on a rectanglar region with two different media. Though the potential function for the inhomogeneous closed region is continuous, the first order derivative is not continuous. So this requires internal boundary conditions or interface conditions. In this paper, the spectral radius of the Jacobi iteration matrix for the inhomogeneous rectangular region is formulated and the approximation for the explicit formula, suitable for the computation of the spectral radius, is deduced. It is also found by the proposed formula that the spectral radius and the optimum relaxation factor rigorously depend on the inhomogeneity or the internal boundary conditions in the closed region, and especially vary with the position of the internal boundary. These findings are also confirmed by the numerical results of the power method.The stationary iterative method using the proposed formula for calculating estimates of the spectral radius of the Jacobi iteration matrix is compared with Carré's method, Kulstrud's method and the stationary iterative method using Frankel's theoretical formula, all for the case of some numerical models with two different media. According to the results our stationary iterative method gives the best results ffor the estimate of the spectral radius of the Jacobi iteration matrix, for the required number of iterations to calculate solutions, and for the accuracy of the solutions.As a numerical example the microstrip transmission line is taken, the propating mode of which can be approximated by a TEM mode. The cross section includes inhomogeneous media and a strip conductor. Upper and lower bounds of the spectral radius of the Jacobi iteration matrix are estimated. Our method using these estimates is also compared with the other methods. The upper bound of the spectral radius of the Jacobi iteration matrix for more general closed regions with two different media might be given by the proposed formula.  相似文献   

4.
Summary A systematic relaxation method is analysed for consistently ordered matrices as defined by Broyden (1964). The method is a generalisation of successive over-relaxation (S.O.R.). A relation is derived between the eigenvalues of the iteration matrix of the method and the eigenvalues of the Jacobi iteration matrix. Forp-cyclic matrices, the method corresponds to using a special type of diagonal matrix instead of a single relaxation factor. For certain choices of this diagonal matrix, the method has a better asymptotic rate of convergence than S.O.R. and requires less calculations and computer store.  相似文献   

5.
For large sparse systems of linear equations iterative techniques are attractive. In this paper, we study a splitting method for an important class of symmetric and indefinite system. Theoretical analyses show that this method converges to the unique solution of the system of linear equations for all t>0 (t is the parameter). Moreover, all the eigenvalues of the iteration matrix are real and nonnegative and the spectral radius of the iteration matrix is decreasing with respect to the parameter t. Besides, a preconditioning strategy based on the splitting of the symmetric and indefinite coefficient matrices is proposed. The eigensolution of the preconditioned matrix is described and an upper bound of the degree of the minimal polynomials for the preconditioned matrix is obtained. Numerical experiments of a model Stokes problem and a least‐squares problem with linear constraints presented to illustrate the effectiveness of the method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
迭代矩阵谱半径的上界估计   总被引:18,自引:1,他引:17       下载免费PDF全文
该文对一类广义对角占优矩阵M,给出了迭代矩阵M-1N 的谱半径的上界.特别,当M是严格对角占优时,证明了所得到的估计值总比通常用作谱半径的估计值要好.  相似文献   

7.
A new technique for acceleration of convergence of static and dynamic iterations for systems of linear equations and systems of linear differential equations is proposed. This technique is based on splitting the matrix of the system in such a way that the resulting iteration matrix has a minimal spectral radius for linear systems and a minimal spectral radius for some value of a parameter in Laplace transform domain for linear differential systems.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

8.
对解非奇异线性方程组的并行多分裂AOR方法,本文给出了该方法的收敛性定理,同时也给出了该方法的迭代矩阵的谱半径的上界估计式。  相似文献   

9.
本文针对二维Poisson方程五点和九点差分格式,导出了求解这些格式的SOR方法中最优松弛因子与区域剖分数的有理拟合公式,给出了Jacobi结合Chebyshev加速方法中Jacobi迭代矩阵谱半径的有理拟合公式.实际计算表明这些公式计算效果良好.  相似文献   

10.
In this paper, we generalize the saddle point problem to general symmetric indefinite systems, we also present a kind of convergent splitting iterative methods for the symmetric indefinite systems. A special divergent splitting is introduced. The sufficient condition is discussed that the eigenvalues of the iteration matrix are real. The spectral radius of the iteration matrix is discussed in detail, the convergence theories of the splitting iterative methods for the symmetric indefinite systems are obtained. Finally, we present a preconditioner and discuss the eigenvalues of preconditioned matrix.  相似文献   

11.
In this paper, based on the Hermitian and skew-Hermitian splitting (HSS) iteration method, a single-step HSS (SHSS) iteration method is introduced to solve the non-Hermitian positive definite linear systems. Theoretical analysis shows that, under a loose restriction on the iteration parameter, the SHSS method is convergent to the unique solution of the linear system. Furthermore, we derive an upper bound for the spectral radius of the SHSS iteration matrix, and the quasi-optimal parameter is obtained to minimize the above upper bound. Numerical experiments are reported to the efficiency of the SHSS method; numerical comparisons show that the proposed SHSS method is superior to the HSS method under certain conditions.  相似文献   

12.
本文证明了当线性方程组系数矩阵 A之 Jacobi迭代矩阵 B=L+ U≥ 0 ,ρ( B) <1时 Gauss-Seidel法之迭代矩阵 G=L1,1的谱半径 ρ( G) =ρ( L1,1)是 ρ( Lr,w) ( 0≤ r≤w≤ 1 ,w>0 )中的最小值 ,即此时 Gauss-Seidel迭代是 AOR法中收敛最快的迭代法 .并且对 JOR法 (谱半径为 ρ( Jw) )和 SAOR法也作了相应的论述 .  相似文献   

13.
A parameterized preconditioning framework is proposed to improve the conditions of the generalized saddle point problems. Based on the eigenvalue estimates for the generalized saddle point matrices, a strategy to minimize the upper bounds of the spectral condition numbers of the matrices is given, and the explicit expression of the quasi-optimal preconditioning parameter is obtained. In numerical experiment, parameterized preconditioning techniques are applied to the generalized saddle point problems derived from the mixed finite element discretization of the stationary Stokes equation. Numerical results demonstrate that the involved preconditioning procedures are efficient.  相似文献   

14.
邵新慧  亢重博 《计算数学》2022,44(1):107-118
本文构建一类双参数拟Toeplitz分裂(TQTS)迭代方法求解变系数非定常空间分数阶扩散方程.TQTS迭代法是基于QTS迭代法引入双参技术建立而成,通过选取适当的参数使迭代矩阵谱半径变得更小,从而有效提升收敛的速度.然后对TQTS迭代法进行收敛性分析,获得相应的收敛区域,并对迭代法中涉及的参数进行讨论,获得使迭代矩阵谱半径上界达到最小的最优参数的表达式.最后通过数值仿真实验验证TQTS迭代法的有效性,实验结果表明TQTS迭代法改进效果十分突出,在迭代时间和步数上均有明显的减小.  相似文献   

15.
A parameterized preconditioning framework is proposed to improve the conditions of the generalized saddle point problems. Based on the eigenvalue estimates for the generalized saddle point matrices, a strategy to minimize the upper bounds of the spectral condition numbers of the matrices is given, and the explicit expression of the quasi-optimal preconditioning parameter is obtained. In numerical experiment, parameterized preconditioning techniques are applied to the generalized saddle point problems derived from the mixed finite element discretization of the stationary Stokes equation. Numerical results demonstrate that the involved preconditioning procedures are efficient.  相似文献   

16.
In this paper, we present a preconditioned variant of the generalized successive overrelaxation (GSOR) iterative method for solving a broad class of complex symmetric linear systems. We study conditions under which the spectral radius of the iteration matrix of the preconditioned GSOR method is smaller than that of the GSOR method and determine the optimal values of iteration parameters. Numerical experiments are given to verify the validity of the presented theoretical results and the effectiveness of the preconditioned GSOR method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space variable problems, the calculation is simplified; by using a local approxima-tion of the coefficients based on patches of finite elements, the coefficient matrix is updated at each time step; by using Ritz-Volterra projection, integration by part and other techniques, the influence coming from the integral term is treated; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity is treated. For both Galerkin and A. D. I. Galerkin schemes the con-vergence properties are rigorously demonstrated, the optimal H~1-norm and L~2-norm estimates are obtained.  相似文献   

18.
The discretization of eigenvalue problems for partial differential operators is a major source of matrix eigenvalue problems having very large dimensions, but only some of the smallest eigenvalues together with the eigenvectors are to be determined. Preconditioned inverse iteration (a “matrix-free” method) derives from the well-known inverse iteration procedure in such a way that the associated system of linear equations is solved approximately by using a (multigrid) preconditioner. A new convergence analysis for preconditioned inverse iteration is presented. The preconditioner is assumed to satisfy some bound for the spectral radius of the error propagation matrix resulting in a simple geometric setup. In this first part the case of poorest convergence depending on the choice of the preconditioner is analyzed. In the second part the dependence on all initial vectors having a fixed Rayleigh quotient is considered. The given theory provides sharp convergence estimates for the eigenvalue approximations showing that multigrid eigenvalue/vector computations can be done with comparable efficiency as known from multigrid methods for boundary value problems.  相似文献   

19.
Many researchers have used Oneshot optimization methods based on user-specified primal state iterations, the corresponding adjoint iterations, and appropriately preconditioned design steps. Our goal here is to develop heuristics for sequencing these three subtasks, in order to optimize the convergence rate of the resulting coupled iteration cycle. A key ingredient is the preconditioning in the design step by a BFGS approximation of the projected Hessian. We provide a hard bound on the spectral radius of the coupled iteration cycle at local minima satisfying second order sufficiency conditions. Finally, we show how certain problem specific parameters can be estimated by local samples and be used to steer the whole process adaptively. We present limited numerical results that confirm the theoretical analysis.  相似文献   

20.
In this paper, we consider an ill-posed image restoration problem with a noise contaminated observation, and a known convolution kernel. A special Hermitian and skew-Hermitian splitting (HSS) iterative method is established for solving the linear systems from image restoration. Our approach is based on an augmented system formulation. The convergence and operation cost of the special HSS iterative method for image restoration problems are discussed. The optimal parameter minimizing the spectral radius of the iteration matrix is derived. We present a detailed algorithm for image restoration problems. Numerical examples are given to demonstrate the performance of the presented method. Finally, the SOR acceleration scheme for the special HSS iterative method is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号