首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct cell‐to‐cell transmission of HIV‐1 is a more efficient means of virus infection than virus‐to‐cell transmission. In this paper, we incorporate both these transmissions into an HIV‐1 virus model with nonlinear general incidence rate, intracellular delay, and cytotoxic T lymphocyte (CTL) immune responses. This model admits three types of equilibria: infection‐free equilibrium, CTL‐inactivated equilibrium, and CTL‐activated equilibrium. By using Lyapunov functionals and LaSalle invariance principle, it is verified that global threshold dynamics of the model can be explicitly described by the basic reproduction numbers.  相似文献   

2.
In this paper, the stability and Hopf bifurcation of a delayed viral infection model with logistic growth and saturated immune impairment is studied. It is shown that there exist 3 equilibria. The sufficient conditions for local asymptotic stability of the infection‐free equilibrium and no‐immune equilibrium are given. We also discussed the local stability of positive equilibrium and the existence of Hopf bifurcation. Moreover, the direction and stability of Hopf bifurcation is obtained by using standard form theory and the center manifold theorem. Finally, numerical simulations are performed to verify the theoretical conclusions.  相似文献   

3.
In this paper, we investigate the dynamical properties for a model of delay differential equations, which describes a virus‐immune interaction in vivo. By analyzing corresponding characteristic equations, the local stability of the equilibria for infection‐free, antibody‐free, and antibody response and the existence of Hopf bifurcation with antibody response delay as a bifurcation parameter at the antibody‐activated infection equilibrium are established, respectively. Global stability of the equilibria for infection‐free, antibody‐free, and antibody response, respectively, also are established by applying the Lyapunov functionals method. The numerical simulations are performed in order to illustrate the dynamical behavior of the model. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
5.
A susceptible‐infected‐susceptible (SIS) epidemic reaction‐diffusion model with saturated incidence rate and spontaneous infection is considered. We establish the existence of endemic equilibrium by using a fixed‐point theorem. The global asymptotic stability of the constant endemic equilibrium is discussed in the case of homogeneous environment. We mainly investigate the effects of diffusion and saturation on asymptotic profiles of the endemic equilibrium. When the saturated incidence rate tends to infinity, the susceptible and infective distributes in the habitat in a nonhomogeneous way; this result is in strong contrast with the case of no spontaneous infection, where the endemic equilibrium tends to the disease free equilibrium. Our analysis shows that the spontaneous infection can enhance the persistence of an infectious disease and may provide some useful implications on disease control.  相似文献   

6.
In this paper, we consider the combined effects of cytotoxic T lymphocyte (CTL) responses on the competition dynamics of two Simian immunodeficiency virus (SIV) strains model. One of strains concerns a relatively slowly replicating and mildly cytopathic virus in the early infection (SIVMneCL8), the other is faster replicating and more cytopathic virus at later stages of the infection (SIVMne170). It is shown that the global dynamics of the ordinary differential equations can be determined by several threshold parameters, and we prove the global stability of the equilibria by rigorous mathematical analysis. To account for a series of infection mechanism leading to viral production, we incorporate time delays in the infection term. Using the methods of constructing suitable Lyapunov functionals and LaSalle’s invariance principle, we obtain the sufficient conditions for the global attractiveness of infection-free equilibrium with both virus strains going extinct, single-infection equilibrium with one of two virus strains out-competing the other one and the two strains coexisting infection equilibrium. We establish that the intracellular delays can destabilize the single-infection equilibrium leading to Hopf bifurcation and periodic oscillations. We show that introduction of immune responses is responsible for the coexistence of two virus strains and the intracellular delays may alter the two-strain competition results. Numerical simulations are presented to illustrate the theoretical conclusions.  相似文献   

7.
In this paper, we propose a discrete virus dynamics model with Holling type‐II infection function. By constructing Lyapunov function, we prove that if , then the infection‐free equilibrium is globally asymptotically stable; whereas if , then sufficient conditions are established for global stability of the infection equilibrium. Our results generalize some known results studied by other researchers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we investigate the dynamical behaviors of three human immunodeficiency virus infection models with two types of cocirculating target cells and distributed intracellular delay. The models take into account both short‐lived infected cells and long‐lived chronically infected cells. In the two types of target cells, the drug efficacy is assumed to be different. The incidence rate of infection is given by bilinear and saturation functional responses in the first and second models, respectively, while it is given by a general function in the third model. Lyapunov functionals are constructed and LaSalle invariance principle is applied to prove the global asymptotic stability of all equilibria of the models. We have derived the basic reproduction number R0 for the three models. For the first two models, we have proven that the disease‐free equilibrium is globally asymptotically stable (GAS) when R0≤1, and the endemic equilibrium is GAS when R0>1. For the third model, we have established a set of sufficient conditions for global stability of both equilibria of the model. We have checked our theoretical results with numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A five‐dimensional ordinary differential equation model describing the transmission of Toxoplamosis gondii disease between human and cat populations is studied in this paper. Self‐diffusion modeling the spatial dynamics of the T. gondii disease is incorporated in the ordinary differential equation model. The normalized version of both models where the unknown functions are the proportions of the susceptible, infected, and controlled individuals in the total population are analyzed. The main results presented herein are that the ODE model undergoes a trans‐critical bifurcation, the system has no periodic orbits inside the positive octant, and the endemic equilibrium is globally asymptotically stable when we restrict the model to inside of the first octant. Furthermore, a local linear stability analysis for the spatially homogeneous equilibrium points of the reaction diffusion model is carried out, and the global stability of both the disease‐free and endemic equilibria are established for the reaction–diffusion system when restricted to inside of the first octant. Finally, numerical simulations are provided to support our theoretical results and to predict some scenarios about the spread of the disease. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a bifurcation solution's analysis is proposed for an HIV‐1 within the host model around its chronic equilibrium point, this is carried out based on Lyapunov–Schmidt approach. It is shown that the coefficient b, which represents the healthy CD4+ T‐cells growth rate, is a bifurcation parameter; this means that the rate of multiplication of healthy cells can have serious effects on the qualitative dynamical properties and structural stability of the infection evolution dynamics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, by incorporating latencies for both human beings and female mosquitoes to the mosquito‐borne diseases model, we investigate a class of multi‐group dengue disease model and study the impacts of heterogeneity and latencies on the spread of infectious disease. Dynamical properties of the multi‐group model with distributed delays are established. The results showthat the global asymptotic stability of the disease‐free equilibrium and the endemic equilibrium depends only on the basic reproduction number. Our proofs for global stability of equilibria use the classical method of Lyapunov functions and the graph‐theoretic approach for large‐scale delay systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The paper explores an eco‐epidemiological model of a predator–prey type, where the prey population is subject to infection. The model is basically a combination of S‐I type model and a Rosenzweig–MacArthur predator–prey model. The novelty of this contribution is to consider different competition coefficients within the prey population, which leads to the emergent carrying capacity. We explicitly separate the competition between non‐infected and infected individuals. This emergent carrying capacity is markedly different to the explicit carrying capacities that have been considered in many eco‐epidemiological models. We observed that different intra‐class and inter‐class competition can facilitate the coexistence of susceptible prey‐infected prey–predator, which is impossible for the case of the explicit carrying capacity model. We also show that these findings are closely associated with bi‐stability. The present system undergoes bi‐stability in two different scenarios: (a) bi‐stability between the planner equilibria where susceptible prey co‐exists with predator or infected prey and (b) bi‐stability between co‐existence equilibrium and the planner equilibrium where susceptible prey coexists with infected prey; have been discussed. The conditions for which the system is to be permanent and the global stability of the system around disease‐free equilibrium are worked out. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Control of epidemic infections is a very urgent issue today. To develop an appropriate strategy for vaccinations and effectively prevent the disease from arising and spreading, we proposed a modified Susceptible‐Infected‐Removed model with impulsive vaccinations. For the model without vaccinations, we proved global stability of one of the steady states depending on the basic reproduction number R0. As typically in the epidemic models, the threshold value of R0 is 1. If R0 is greater than 1, then the positive steady state called endemic equilibrium exists and is globally stable, whereas for smaller values of R0, it does not exist, and the semi‐trivial steady state called disease‐free equilibrium is globally stable. Using impulsive differential equation comparison theorem, we derived sufficient conditions under which the infectious disease described by the considered model disappears ultimately. The analytical results are illustrated by numerical simulations for Hepatitis B virus infection that confirm the theoretical possibility of the infection elimination because of the proper vaccinations policy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we study a virus dynamics model with logistic mitosis, cure rate, and intracellular delay. By means of construction of a suitable Lyapunov functionals, obtained by linear combinations of Volterra—type functions, composite quadratic functions and Volterra—type functionals, we provide the global stability for this model. If R0, the basic reproductive number, satisfies R0 ≤ 1, then the infection‐free equilibrium state is globally asymptotically stable. Our system is persistent if R0 > 1. On the other hand, if R0 > 1, then infection‐free equilibrium becomes unstable and a unique infected equilibrium exists. The local stability analysis is carried out for the infected equilibrium, and it is shown that, if the parameters satisfy a condition, the infected equilibrium can be unstable and a Hopf bifurcation can occur. We also have that if R0 > 1, then the infected equilibrium state is globally asymptotically stable if a sufficient condition is satisfied. We illustrate our findings with some numerical simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we study the qualitative behavior of a competitive system of second‐order rational difference equations. More precisely, we investigate the boundedness character, existence and uniqueness of positive equilibrium point, local asymptotic stability and global stability of the unique positive equilibrium point and rate of convergence of positive solutions of the system. Some numerical examples are given to verify our theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we study a viral infection model with an immunity time delay accounting for the time between the immune system touching antigenic stimulation and generating CTLs. By calculation, we derive two thresholds to determine the global dynamics of the model, i.e., the reproduction number for viral infection $R_{0}$ and for CTL immune response $R_{1}$. By analyzing the characteristic equation, the local stability of each feasible equilibrium is discussed. Furthermore, the existence of Hopf bifurcation at the CTL-activated infection equilibrium is also studied. By constructing suitable Lyapunov functionals, we prove that when $R_{0}\leq1$, the infection-free equilibrium is globally asymptotically stable; when $R_{0}>1$ and $R_{1}\leq1$, the CTL-inactivated infection equilibrium is globally asymptotically stable; Numerical simulation is carried out to illustrate the main results in the end.  相似文献   

17.
The limitation of contact between susceptible and infected individuals plays an important role in decreasing the transmission of infectious diseases. Prevention and control strategies contribute to minimizing the transmission rate. In this paper, we propose SIR epidemic model with delayed control strategies, in which delay describes the response and effect time. We study the dynamic properties of the epidemic model from three aspects: steady states, stability and bifurcation. By eliminating the existence of limit cycles, we establish the global stability of the endemic equilibrium, when the delay is ignored. Further, we find that the delayed effect on the infection rate does not affect the stability of the disease-free equilibrium, but it can destabilize the endemic equilibrium and bring Hopf bifurcation. Theoretical results show that the prevention and control strategies can effectively reduce the final number of infected individuals in the population. Numerical results corroborate the theoretical ones.  相似文献   

18.
In this paper, we propose a host‐vector model for malaria transmission by incorporating infection age in the infected host population and nonlinear incidence for transmission from infectious vectors to susceptible hosts. One novelty of the model is that the recovered hosts only have temporary immunity and another is that successfully recovered infected hosts may become susceptible immediately. Firstly, the existence and local stability of equilibria is studied. Secondly, rigorous mathematical analyses on technical materials and necessary arguments, including asymptotic smoothness and uniform persistence of the system, are given. Thirdly, by applying the fluctuation lemma and the approach of Lyapunov functionals, the threshold dynamics of the model for a special case were established. Roughly speaking, the disease‐free equilibrium is globally asymptotically stable when the basic reproduction number is less than one and otherwise the endemic equilibrium is globally asymptotically stable when no reinfection occurs. It is shown that the infection age and nonlinear incidence not only impact on the basic reproduction number but also could affect the values of the endemic steady state. Numerical simulations were performed to support the theoretical results.  相似文献   

19.
In this paper, a delayed eco‐epidemiological model with Holling type II functional response is investigated. By analyzing corresponding characteristic equations, the local stability of each of the feasible equilibria and the existence of Hopf bifurcations at the disease‐free equilibrium, the susceptible predator‐free equilibrium and the endemic‐coexistence equilibrium are established, respectively. By means of Lyapunov functionals and LaSalle's invariance principle, sufficient conditions are derived for the global stability of the endemic‐coexistence equilibrium, the disease‐free equilibrium, the susceptible predator‐free equilibrium and the predator‐extinction equilibrium of the system, respectively. Numerical simulations are carried out to illustrate the theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Analysis of a viral infection model with delayed immune response   总被引:1,自引:0,他引:1  
It is well known that the immune response plays an important role in eliminating or controlling the disease after human body is infected by virus. In this paper, we investigate the dynamical behavior of a viral infection model with retarded immune response. The effect of time delay on stability of the equilibria of the system has been studied and sufficient condition for local asymptotic stability of the infected equilibrium and global asymptotic stability of the infection-free equilibrium and the immune-exhausted equilibrium are given. By numerical simulating,we observe that the stationary solution becomes unstable at some critical immune response time, while the delay time and birth rate of susceptible host cells increase, and we also discover the occurrence of stable periodic solutions and chaotic dynamical behavior. The results can be used to explain the complexity of the immune state of patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号