首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Regional migration has become an underlying factor in the spread of HIV transmission. In addition, immigrants with HIV status has contributed with high‐risk of sexually transmitted infection to its “destination” communities and promotes dissemination of HIV. Efforts to address HIV/AIDS among conflict‐affected populations should be properly addressed to eliminate potential role of the spread of the disease and risk of exposure to HIV. Motivated from this situation, HIV‐infected immigrants factor to HIV/SIV transmission link will be investigated in this research and examine its potential effect using optimal control method. Nonlinear deterministic mathematical model is used which is a multiple host model comprising of humans and chimpanzees. Some basic properties of the model such as invariant region and positivity of the solutions will be examined. The local stability of the disease‐free equilibrium was examined by computing the basic reproduction number, and it was found to be locally asymptotically stable when ?0<1 and unstable otherwise. Sensitivity analysis was conducted to determine the parameters that help most in the spread of the virus. Pontryagin's maximum principle is used to obtain the optimality conditions for controlling the disease spread. Numerical simulation was conducted to obtain the analytical results. The results shows that combination of public health awareness, treatment, and culling help in controlling the HIV disease spread.  相似文献   

2.
We study the contributions of within‐host (virus‐to‐cell) and synaptic (cell‐to‐cell) transmissions in a mathematical model for human immunodeficiency virus epidemics. The model also includes drug resistance. We prove the local and global stability of the disease‐free equilibrium and the local stability of the endemic equilibrium. We analyse the effect of the cell‐to‐cell transmission rate on the value of the reproduction number, R0. Moreover, we show evidence of a qualitative change in the models' dynamics, subjected to the value of the drug efficacy. In the end, important inferences are drawn. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
4.
We establish a discrete virus dynamic model by discretizing a continuous HIV‐1 virus model with bilinear infective rate using ‘hybrid’ Euler method. We discuss not only the existence and global stability of the uninfected equilibrium but also the existence and local stability of the infected equilibrium. We prove that there exists a crucial value similar to that of the continuous HIV‐1 virus dynamics, which is called the basic reproductive ratio of the virus. If the basic reproductive ratio of the virus is less than one, the uninfected equilibrium is globally asymptotically stable. If the basic reproductive ratio of the virus is larger than one, the infected equilibrium exists and is locally stable. Moreover, we consider the permanence for such a system by constructing a Lyapunov function vn. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we study the dynamics of an improved mathematical model on HIV-1 virus with cell mediated immunity. This new 5-dimensional model is based on the combination of a basic 3-dimensional HIV-1 model and a 4-dimensional immunity response model, which more realistically describes dynamics between the uninfected cells, infected cells, virus, the CTL response cells and CTL effector cells. Our 5-dimensional model may be reduced to the 4-dimensional model by applying a quasi-steady state assumption on the variable of virus. However, it is shown in this paper that virus is necessary to be involved in the modeling, and that a quasi-steady state assumption should be applied carefully, which may miss some important dynamical behavior of the system. Detailed bifurcation analysis is given to show that the system has three equilibrium solutions, namely the infection-free equilibrium, the infectious equilibrium without CTL, and the infectious equilibrium with CTL, and a series of bifurcations including two transcritical bifurcations and one or two possible Hopf bifurcations occur from these three equilibria as the basic reproduction number is varied. The mathematical methods applied in this paper include characteristic equations, Routh–Hurwitz condition, fluctuation lemma, Lyapunov function and computation of normal forms. Numerical simulation is also presented to demonstrate the applicability of the theoretical predictions.  相似文献   

6.
7.
A four dimension ODE model is built to study the infection of human immunodeficiency virus (HIV) in vivo. We include in this model four components: the healthy T cells, the latent-infected T cells, the active-infected T cells and the HIV virus. Two types of HIV transmissions in vivo are also included in the model: the virus-to-cell transmission, and the cell-to-cell HIV transmission. There are two possible equilibriums: the healthy equilibrium, and the infected steady state. The basic reproduction number R 0 is introduced. When R 0 < 1, the healthy equilibrium is globally stable and when R 0 > 1, the infected equilibrium exists and is globally stable. Through simulations, we find that, the cell-to-cell HIV transmission is very important for the final outcome of the HIV attacking. Some important clinical observations about the HIV infection situation in lymph node are also verified.   相似文献   

8.
In this paper, we propose a host‐vector model for malaria transmission by incorporating infection age in the infected host population and nonlinear incidence for transmission from infectious vectors to susceptible hosts. One novelty of the model is that the recovered hosts only have temporary immunity and another is that successfully recovered infected hosts may become susceptible immediately. Firstly, the existence and local stability of equilibria is studied. Secondly, rigorous mathematical analyses on technical materials and necessary arguments, including asymptotic smoothness and uniform persistence of the system, are given. Thirdly, by applying the fluctuation lemma and the approach of Lyapunov functionals, the threshold dynamics of the model for a special case were established. Roughly speaking, the disease‐free equilibrium is globally asymptotically stable when the basic reproduction number is less than one and otherwise the endemic equilibrium is globally asymptotically stable when no reinfection occurs. It is shown that the infection age and nonlinear incidence not only impact on the basic reproduction number but also could affect the values of the endemic steady state. Numerical simulations were performed to support the theoretical results.  相似文献   

9.
In this paper, we propose an improved human T‐cell leukemia virus type 1 infection model with mitotic division of actively infected cells and delayed cytotoxic T lymphocyte immune response. By constructing suitable Lyapunov functional and using LaSalle invariance principle, we investigate the global stability of the infection‐free equilibrium of the system. Our results show that the time delay can change stability behavior of the infection equilibrium and lead to the existence of Hopf bifurcations. Finally, numerical simulations are conducted to illustrate the applications of the main results.  相似文献   

10.
In this paper, a fractional order model for the spread of human immunodeficiency virus (HIV) infection is proposed to study the effect of screening of unaware infected individuals on the spread of the HIV virus. For this purpose, local asymptotic stability analysis of the disease‐free equilibrium is investigated. In addition, the model is studied for different values of the fractional order to show the relation between the variations of the reproduction number and the order of the proposed model. Finally, numerical solutions are simulated by using a predictor‐corrector method to illustrate the dynamics between susceptible individuals and unaware infected individuals.  相似文献   

11.
HIV infection persists despite long-term administration of antiretroviral therapy. The mechanisms underlying HIV persistence are not fully understood. Direct viral transmission from infected to uninfected cells (cell-to-cell transmission) may be one of them. During cell-to-cell transmission, multiple virions are delivered to an uninfected cell, making it possible that at least one virion can escape HIV drugs and establish infection. In this paper, we develop a mathematical model that includes cell-to-cell viral transmission to study HIV persistence. During cell-to-cell transmission, it is assumed that various number of virus particles are transmitted with different probabilities and antiretroviral therapy has different effectiveness in blocking their infection. We analyze the model by deriving the basic reproduction number and investigating the stability of equilibria. Sensitivity analysis and numerical simulation show that the viral load is still sensitive to the change of the treatment effectiveness in blocking cell-free virus infection. To reduce this sensitivity, we modify the model by including density-dependent infected cell death or HIV latent infection. The model results suggest that although cell-to-cell transmission may have reduced susceptibility to HIV drugs, HIV latency represents a major reason for HIV persistence in patients on suppressive treatment.  相似文献   

12.
Effective combination therapy usually reduces the plasma viral load of HIV to below the detection limit, but it cannot eradicate the virus. The latently infected cell activation is considered to be the main obstacle to completely eradicating HIV infection. In this paper, we consider an HIV infection model with latently infected cell activation, virus diffusion and spatial heterogeneity under Neumann boundary condition. The basic reproduction ratio is characterized by the principal eigenvalue of the related elliptic eigenvalue problem. Besides, by constructing Lyapunov functionals and using Green’s first identity, the global threshold dynamics of the system are completely established. Numerical simulations are carried out to illustrate the theoretical results, in particular, the influence of virus diffusion rate on the basic reproduction ratio is addressed.  相似文献   

13.
Hepatitis B virus (HBV) and its vaccination strategy may affect human immunodeficiency virus (HIV) transmission dynamics because both viruses have synergistic effects. To quantitatively assess the potential impact of HBV and its vaccination strategy on HIV transmission dynamics at the population level, in this paper, we formulate a deterministic compartmental model that describes the joint dynamics of HBV and HIV. We first derive the explicit expressions for the basic reproduction numbers of HIV and HBV and analyze the dynamics of HIV and HBV subsystems, respectively. Then a systematic qualitative analysis of the full system is also provided, which includes the local and global behavior. By using a set of reasonable parameter values, the full system is numerically investigated to assess the potential impact of HBV and its vaccination strategy on HIV transmission. The direct and indirect population level impact of HBV on HIV is demonstrated by calculating the fraction of HIV infections attributable to HBV and the difference between HIV prevalence in the presence and absence of HBV, respectively. The findings imply that the increase of HBV vaccination rate may unusually accelerate HIV epidemics indirectly, although the direct effect of HBV on HIV transmission decreases as HBV vaccination rate increases. Finally, the potential impact of HIV on HBV transmission dynamics is investigated by way of parenthesis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The treatment of human immunodeficiency virus (HIV) remains a major challenge, even if significant progress has been made in infection treatment by ‘drug cocktails’. Nowadays, research trend is to minimize the number of pills taken when treating infection. In this paper, an HIV‐1 within host model where healthy cells follow a simple logistic growth is considered. Basic reproduction number of the model is calculated using next generation matrix method, steady states are derived; their local, as well as global stability, is discussed using the Routh–Hurwitz criteria, Lyapunov functions and the Lozinskii measure approach. The optimal control policy is formulated and solved as an optimal control problem. Numerical simulations are performed to compare several cases, representing a treatment by Interleukin2 alone, classical treatment by multitherapy drugs alone, then both treatments at the same time. Objective functionals aim to (i) minimize infected cells quantity; (ii) minimize free virus particles number; and (iii) maximize healthy cells density in blood. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A function between graphs is k‐to‐1 if each point in the codomain has precisely k pre‐images in the domain. Given two graphs, G and H, and an integer k≥1, and considering G and H as subsets of ?3, there may or may not be a k‐to‐1 continuous function (i.e. a k‐to‐1 map in the usual topological sense) from G onto H. In this paper we consider graphs G and H whose order is of a different parity and determine the even and odd values of k for which there exists a k‐to‐1 map from G onto H. We first consider k‐to‐1 maps from K2r onto K2s+1 and prove that for 1≤rs, (r, s)≠(1, 1), there is a continuous k‐to‐1 map for k even if and only if k≥2s and for k odd if and only if k≥?s?o (where ?s?o indicates the next odd integer greater than or equal to s). We then consider k‐to‐1 maps from K2s+1 onto K2s. We show that for 1≤r<s, such a map exists for even values of k if and only if k≥2s. We also prove that whatever the values of r and s are, no such k‐to‐1 map exists for odd values of k. To conclude, we give all triples (n, k, m) for which there is a k‐to‐1 map from Kn onto Km in the case when nm. © 2009 Wiley Periodicals, Inc. J Graph Theory 65: 35–60, 2010.  相似文献   

16.
In this paper, we proposed a multidelayed in‐host HIV model to represent the interaction between human immunodeficiency virus and immune response. One delay was considered to incorporate the time required by the virus for various intracellular events to make a host cell productively infective, and the second delay was introduced to take into account the time required for adaptive immune system to respond against infection. We extensively analyzed this multidelayed model analytically and numerically. We show that delay may have both destabilizing and stabilizing effects even when the system contains a single immune response delay. It happens when there exists two sequences of critical values of this delay. If the system starts with stable state in absence of delay, then the smallest value of these critical delays causes instability and the next higher value causes stability. The system may also show stability switching for different values of the virus replication factor. These results demonstrate the possible reasons of intrapatients and interpatients variability of CD4+ T cells and virus counts in HIV‐infected patients.  相似文献   

17.
We develop a kinetic model for CD8 T lymphocytes (CTL) whose purpose is to kill cells infected with viruses and intracellular parasites. Using a set of first-order nonlinear differential equations, the model predicts how numbers of different cell types involved in CTL response depend on time. The model postulates that CTL response requires continuous presence of professional antigen-presenting cells (APC) comprised of macrophages and dendritic cells. It assumes that any virus present in excess of a threshold level activates APC that, in turn, activate CTL that expand in number and become armed “effector” cells. In the end, APC are deactivated after virus is cleared. The lack of signal from APC causes effector cells to differentiate, by default, into “transitory cells” that either die, or, in a small part, become long-lived memory cells. Viruses capable of infecting APC will cause premature retirement of effector CTL. If transitory cells encounter virus, which takes place after the premature depletion, CTL become anergic (unresponsive to external stimuli). The model is designed to fit recent experiments on primary CTL response to simian immunodeficiency virus closely related to HIV and lymphocytic choriomeningitis virus. The two viruses are known to infect APC and make them targets for CTL they are supposed to control. Both viruses cause premature depletion and anergy of CTL and persist in the host for life.  相似文献   

18.
Objective: The study aimed to analyze sexual networks and sex role preference as factors of HIV transmission among men who have sex with men (MSM) in China. Methods: We have developed a new scale‐free network model with a sex role preference framework to study HIV transmission among MSM. We have studied the influence of different sexual networks and the effect of different proportion of sex role preference upon HIV transmission. The results are that the average ones drawn from the scenarios have been simulated for more than 30 times. Results: Compared with the traditional mathematical model, the sexual networks provide a different prediction of the HIV transmission in the next 30 years. Without any intervention, the proportion of HIV carriers will descend after some time. Conclusions: There is significant associations among network characteristics, sex role preference, and HIV infection. Although network‐based intervention is efficient in reducing HIV transmission among MSM, there are only few studies of the characteristics of sexual network, and such gaps deserve more attention and exploration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we investigate the dynamical behaviors of three human immunodeficiency virus infection models with two types of cocirculating target cells and distributed intracellular delay. The models take into account both short‐lived infected cells and long‐lived chronically infected cells. In the two types of target cells, the drug efficacy is assumed to be different. The incidence rate of infection is given by bilinear and saturation functional responses in the first and second models, respectively, while it is given by a general function in the third model. Lyapunov functionals are constructed and LaSalle invariance principle is applied to prove the global asymptotic stability of all equilibria of the models. We have derived the basic reproduction number R0 for the three models. For the first two models, we have proven that the disease‐free equilibrium is globally asymptotically stable (GAS) when R0≤1, and the endemic equilibrium is GAS when R0>1. For the third model, we have established a set of sufficient conditions for global stability of both equilibria of the model. We have checked our theoretical results with numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号