首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Nonlinear dynamical stochastic models are ubiquitous in different areas. Their statistical properties are often of great interest, but are also very challenging to compute. Many excitable media models belong to such types of complex systems with large state dimensions and the associated covariance matrices have localized structures. In this article, a mathematical framework to understand the spatial localization for a large class of stochastically coupled nonlinear systems in high dimensions is developed. Rigorous \linebreak mathematical analysis shows that the local effect from the diffusion results in an exponential decay of the components in the covariance matrix as a function of the distance while the global effect due to the mean field interaction synchronizes different components and contributes to a global covariance. The analysis is based on a comparison with an appropriate linear surrogate model, of which the covariance propagation can be computed explicitly. Two important applications of these theoretical results are discussed. They are the spatial averaging strategy for efficiently sampling the covariance matrix and the localization technique in data assimilation. Test examples of a linear model and a stochastically coupled FitzHugh-Nagumo model for excitable media are adopted to validate the theoretical results. The latter is also used for a systematical study of the spatial averaging strategy in efficiently sampling the covariance matrix in different dynamical regimes.  相似文献   

2.
Contemporary data assimilation often involves more than a million prediction variables. Ensemble Kalman filters (EnKF) have been developed by geoscientists. They are successful indispensable tools in science and engineering, because they allow for computationally cheap low‐ensemble‐state approximation for extremely large‐dimensional turbulent dynamical systems. The practical finite ensemble filters like EnKF necessarily involve modifications such as covariance inflation and localization, and it is a genuine mystery why they perform so well with small ensemble sizes in large dimensions. This paper provides the first rigorous stochastic analysis of the accuracy and covariance fidelity of EnKF in the practical regime where the ensemble size is much smaller than the large ambient dimension for EnKFs with random coefficients. A challenging issue overcome here is that EnKF in huge dimensions introduces unavoidable bias and model errors that need to be controlled and estimated. © 2017 the Authors. Communications on Pure and Applied Mathematics is published by the Courant Institute of Mathematics and Wiley Periodicals, Inc.  相似文献   

3.
This paper discusses the estimation of a class of discrete-time linear stochastic systems with statistically-constrained unknown inputs (UI), which can represent an arbitrary combination of a class of un-modeled dynamics, random UI with unknown covariance matrix and deterministic UI. In filter design, an upper bound filter is explored to compute, recursively and adaptively, the upper bounds of covariance matrices of the state prediction error, innovation and state estimate error. Furthermore, the minimum upper bound filter (MUBF) is obtained via online scalar parameter convex optimization in pursuit of the minimum upper bounds. Two examples, a system with multiple piecewise UIs and a continuous stirred tank reactor (CSTR), are used to illustrate the proposed MUBF scheme and verify its performance.  相似文献   

4.
This work studies the effects of sampling variability in Monte Carlo-based methods to estimate very high-dimensional systems. Recent focus in the geosciences has been on representing the atmospheric state using a probability density function, and, for extremely high-dimensional systems, various sample-based Kalman filter techniques have been developed to address the problem of real-time assimilation of system information and observations. As the employed sample sizes are typically several orders of magnitude smaller than the system dimension, such sampling techniques inevitably induce considerable variability into the state estimate, primarily through prior and posterior sample covariance matrices. In this article, we quantify this variability with mean squared error measures for two Monte Carlo-based Kalman filter variants: the ensemble Kalman filter and the ensemble square-root Kalman filter. Expressions of the error measures are derived under weak assumptions and show that sample sizes need to grow proportionally to the square of the system dimension for bounded error growth. To reduce necessary ensemble size requirements and to address rank-deficient sample covariances, covariance-shrinking (tapering) based on the Schur product of the prior sample covariance and a positive definite function is demonstrated to be a simple, computationally feasible, and very effective technique. Rules for obtaining optimal taper functions for both stationary as well as non-stationary covariances are given, and optimal taper lengths are given in terms of the ensemble size and practical range of the forecast covariance. Results are also presented for optimal covariance inflation. The theory is verified and illustrated with extensive simulations.  相似文献   

5.
The optimization of the output matrix for a discrete-time, single-output, linear stochastic system is approached from two different points of view. Firstly, we investigate the problem of minimizing the steady-state filter error variance with respect to a time-invariant output matrix subject to a norm constraint. Secondly, we propose a filter algorithm in which the output matrix at timek is chosen so as to maximize the difference at timek+1 between the variance of the prediction error and that of the a posteriori error. For this filter, boundedness of the covariance and asymptotic stability are investigated. Several numerical experiments are reported: they give information about the limiting behavior of the sequence of output matrices generated by the algorithm and the corresponding error covariance. They also enable us to make a comparison with the results obtained by solving the former problem.This work was supported by the Italian Ministry of Education (MPI 40%), Rome, Italy.  相似文献   

6.
Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semiparametric model by imposing parametric within-subject correlation while allowing the nonparametric variation function. We estimate regression functions by using the local linear technique and propose generalized es...  相似文献   

7.
This paper addresses the problem of distributed fusion estimation from measurements with packet dropouts and cross-correlated noises acquired from different sensors. Assuming that the packet dropouts are modelled by independent Bernoulli random variables with different characteristics for each sensor and that measurement noises are cross-correlated at the same and at consecutive sampling times, filtering and smoothing algorithms are derived using the distributed fusion method. The distributed fusion filter and smoother are obtained as a matrix-weighted linear combination of corresponding local least-squares linear estimators, verifying that the mean squared error is minimum. The local linear filtering and fixed-point smoothing algorithms are derived using the first and second-order moments of the signal and the noises present in the observation model. Simulation results are provided to illustrate the feasibility of the proposed algorithms, using the error estimation covariance matrices as measure of the quality of the estimators.  相似文献   

8.
本文考虑纵向数据半参数回归模型,通过考虑纵向数据的协方差结构,基于Profile最小二乘法和局部线性拟合的方法建立了模型中参数分量、回归函数和误差方差的估计量,来提高估计的有效性,在适当条件下给出了这些估计量的相合性.并通过模拟研究将该方法与最小二乘局部线性拟合估计方法进行了比较,表明了Profile最小二乘局部线性拟合方法在有限样本情况下具有良好的性质.  相似文献   

9.
The asymptotic distribution for the local linear estimator in nonparametric regression models is established under a general parametric error covariance with dependent and heterogeneously distributed regressors. A two-step estimation procedure that incorporates the parametric information in the error covariance matrix is proposed. Sufficient conditions for its asymptotic normality are given and its efficiency relative to the local linear estimator is established. We give examples of how our results are useful in some recently studied regression models. A Monte Carlo study confirms the asymptotic theory predictions and compares our estimator with some recently proposed alternative estimation procedures.  相似文献   

10.
In this paper we give weighted, or localized, pointwise error estimates which are valid for two different mixed finite element methods for a general second-order linear elliptic problem and for general choices of mixed elements for simplicial meshes. These estimates, similar in spirit to those recently proved by Schatz for the basic Galerkin finite element method for elliptic problems, show that the dependence of the pointwise errors in both the scalar and vector variables on the derivative of the solution is mostly local in character or conversely that the global dependence of the pointwise errors is weak. This localization is more pronounced for higher order elements. Our estimates indicate that localization occurs except when the lowest order Brezzi-Douglas-Marini elements are used, and we provide computational examples showing that the error is indeed not localized when these elements are employed.

  相似文献   


11.
This paper presents a generalization of Rao's covariance structure. In a general linear regression model, we classify the error covariance structure into several categories and investigate the efficiency of the ordinary least squares estimator (OLSE) relative to the Gauss–Markov estimator (GME). The classification criterion considered here is the rank of the covariance matrix of the difference between the OLSE and the GME. Hence our classification includes Rao's covariance structure. The results are applied to models with special structures: a general multivariate analysis of variance model, a seemingly unrelated regression model, and a serial correlation model.  相似文献   

12.
Tempered fractional stable motion adds an exponential tempering to the power-law kernel in a linear fractional stable motion, or a shift to the power-law filter in a harmonizable fractional stable motion. Increments from a stationary time series that can exhibit semi-long-range dependence. This paper develops the basic theory of tempered fractional stable processes, including dependence structure, sample path behavior, local times, and local nondeterminism.  相似文献   

13.
In this article, we study the error covariance of the recursive Kalman filter when the parameters of the filter are driven by a Markov chain taking values in a countably infinite set. We do not assume ergodicity nor require the existence of limiting probabilities for the Markov chain. The error covariance matrix of the filter depends on the Markov state realizations, and hence forms a stochastic process. We show in a rather direct and comprehensive manner that this error covariance process is mean bounded under the standard stochastic detectability concept. Illustrative examples are included.  相似文献   

14.
This paper newly designs the recursive least-squares (RLS) fixed-lag smoother and filter using the covariance information in linear continuous-time stochastic systems. It is assumed that the signal is observed with additive white observation noise and the signal is uncorrelated with the observation noise. The estimators require the covariance information of the signal and the variance of the observation noise. The auto-covariance function of the signal is expressed in the semi-degenerate kernel form.  相似文献   

15.
并行准高斯高阶递归滤波算法研究   总被引:1,自引:0,他引:1  
三维变分同化系统中一个重要的问题是背景误差协方差矩阵B及其逆的求解.背景误差协方差矩阵的水平变换部分采用递归滤波运算,可以简化矩阵的求解,解决了背景误差协方差矩阵B及其逆难以求解的问题.本文对准高斯高阶递归滤波的算法原理和过程进行了深入研究.因为递归滤波并行的低可扩展性制约了高阶递归滤波算法在三维变分同化系统中的应用,所以本文提出了阶段二维区域剖分并行化方法,实现了并行准高斯高阶递归滤波算法库.数值试验表明,四阶递归滤波1次的效果明显优于一阶4次的滤波效果;并且高阶递归滤波并行算法64核时能达到大约50倍的加速,并行效率高达78%,具有良好的加速效果和较强的可扩展性.  相似文献   

16.
研究一类线性模型下参数估计的若干问题.这类模型包含了多个因变量线性模型、增长曲线模型、扩充的增长曲线模型、似乎不相关回归方程组、方差分量模型等常用模型.在这类线性模型下,证明了当误差服从多元t分布时与误差服从多元正态分布时,具有相同的完全统计量和无偏估计,且在后一种情况下的充分统计量必为前一种情况下的充分统计量.对于带有多种协方差结构的前述几种模型,把在误差服从多元正态分布下,相应的协方差阵及有关参数的一致最小风险无偏(UMRU)估计存在性的结论推广到了相应的误差服从多元t分布情形.此外,对于误差服从多元t分布的这类统一的线性模型,给出了回归系数的线性可估函数的无偏估计的协方差阵的C-R下界.  相似文献   

17.
The Chebyshev accelerated preconditioned modified Hermitian and skew‐Hermitian splitting (CAPMHSS) iteration method is presented for solving the linear systems of equations, which have two‐by‐two block coefficient matrices. We derive an iteration error bound to show that the new method is convergent as long as the eigenvalue bounds are not underestimated. Even when the spectral information is lacking, the CAPMHSS iteration method could be considered as an exponentially converging iterative scheme for certain choices of the method parameters. In this case, the convergence rate is independent of the parameters. Besides, the linear subsystems in each iteration can be solved inexactly, which leads to the inexact CAPMHSS iteration method. The iteration error bound of the inexact method is derived also. We discuss in detail the implementation of CAPMHSS for solving two models arising from the Galerkin finite‐element discretizations of distributed control problems and complex symmetric linear systems. The numerical results show the robustness and the efficiency of the new methods.  相似文献   

18.
王珏钰  顾超  朱德通 《数学学报》1936,63(6):601-620
本文给出了一种新的多维滤子算法结合非单调信赖域策略解线性约束优化.目标函数及其投影梯度的分量组成了新的多维滤子,并且与信赖域半径有关.当信赖域半径充分小时,新的滤子能接受试探点,避免算法无限循环.非单调信赖域策略保证了新算法的整体收敛性.目前为止,多维滤子算法局部收敛性分析仍然没有解决,在合理假设下,我们分析了新算法的局部超线性收敛性.数值结果验证了算法的有效性.  相似文献   

19.
Matrix-valued dynamical systems are an important class of systems that can describe important processes such as covariance/second-order moment processes, or processes on manifolds and Lie Groups. We address here the case of processes that leave the cone of positive semidefinite matrices invariant, thereby including covariance and second-order moment processes. Both the continuous-time and the discrete-time cases are first considered. In the LTV case, the obtained stability and stabilization conditions are expressed as differential and difference Lyapunov conditions which are equivalent, in the LTI case, to some spectral conditions for the generators of the processes. Convex stabilization conditions are also obtained in both the continuous-time and the discrete-time setting. It is proven that systems with constant delays are stable provided that the systems with zero-delays are stable—which mirrors existing results for linear positive systems. The results are then extended and unified into an impulsive formulation for which similar results are obtained. The proposed framework is very general and can recover and/or extend many of the existing results in the literature on linear systems related to (mean-square) exponential (uniform) stability. Several examples are discussed to illustrate this claim by deriving stability conditions for stochastic systems driven by Brownian motion and Poissonian jumps, Markov jump systems, (stochastic) switched systems, (stochastic) impulsive systems, (stochastic) sampled-data systems, and all their possible combinations.  相似文献   

20.
We describe the numerical scheme for the discretization and solution of 2D elliptic equations with strongly varying piecewise constant coefficients arising in the stochastic homogenization of multiscale composite materials. An efficient stiffness matrix generation scheme based on assembling the local Kronecker product matrices is introduced. The resulting large linear systems of equations are solved by the preconditioned conjugate gradient iteration with a convergence rate that is independent of the grid size and the variation in jumping coefficients (contrast). Using this solver, we numerically investigate the convergence of the representative volume element (RVE) method in stochastic homogenization that extracts the effective behavior of the random coefficient field. Our numerical experiments confirm the asymptotic convergence rate of systematic error and standard deviation in the size of RVE rigorously established in Gloria et al. The asymptotic behavior of covariances of the homogenized matrix in the form of a quartic tensor is also studied numerically. Our approach allows laptop computation of sufficiently large number of stochastic realizations even for large sizes of the RVE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号