首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let = 2cos (/5) and let []. Denote the normaliser ofG0() of the Hecke group G5 in PSL2() by N(G0()). Then N(G0())= G0(/h), where h is the largest divisor of 4 such that h2 divides. Further, N(G0())/G0() is either 1 (if h = 1), 2 x 2 (if h= 2) or 4 x 4 (if h = 4).  相似文献   

2.
Soient F un corps commutatif localement compact non archimédienet un caractère additif non trivial de F. Soient unereprésentation du groupe de Weil–Deligne de F,et sa contragrédiente. Nous calculons le facteur (, , ). De manière analogue, nous calculons le facteur (x, , ) pour toute représentationadmissible irréductible de GLn(F). En conséquence,si F est de caractéristique nulle et si et se correspondentpar la correspondance de Langlands construite par M. Harris,ou celle construite par les auteurs, alors les facteurs (, , s) et (x, , s) sont égaux pour tout nombre complexe s. Let F be a non-Archimedean local field and a non-trivial additivecharacter of F. Let be a representation of the Weil–Delignegroup of F and its contragredient representation. We compute (, , ). Analogously, we compute (x, , ) for all irreducible admissible representations of GLn(F).Consequently, if F has characteristic zero, and , correspondvia the Langlands correspondence established by M. Harris orthe correspondence constructed by the authors, then we have(, , s) = (x, , s) for all sC. 1991 Mathematics Subject Classification22E50.  相似文献   

3.
Let be a singular cardinal of regular uncountable cofinality. Let {(): < } be a continuous increasing sequence withlimit , and let =()+(), < be regular cardinals. Let I be a normal ideal on , and assume that the reduced product</I admits a cofinal -scale of ordinal functions. Then +, where =||||I is the I-norm of .  相似文献   

4.
1. Definition of the A-polynomial The A-polynomial was introduced in [3] (see also [5]), and wepresent an alternative definition here. Let M be a compact 3-manifoldwith boundary a torus T. Pick a basis , µ of 1T, whichwe shall refer to as the longitude and meridian. Consider thesubset RU of the affine algebraic variety R = Hom (1M, SL2C)having the property that () and (µ) are upper triangular.This is an algebraic subset of R, since one just adds equationsstating that the bottom-left entries in certain matrices arezero. There is a well-defined eigenvalue map given by taking the top-left entries of () and (µ).1991 Mathematics Subject Classification 57M25, 57M50.  相似文献   

5.
We prove that the crossed product C*-algebra C*r(, ) of a freegroup with its boundary sits naturally between the reducedgroup C*-algebra C*r and its injective envelope I(C*r). In otherwords, we have natural inclusion C*r C*r(, ) I(C*r) of C*-algebras.  相似文献   

6.
Intersections of Odd Order Hall Subgroups   总被引:2,自引:0,他引:2  
Given a set of odd primes and a -solvable finite group G, onecan choose three (not necessarily distinct) Hall -subgroupsof G whose intersection is O(G). This statement relies on aresult concerning long orbits in coprime actions of groups ofodd order. 2000 Mathematics Subject Classification 20D20.  相似文献   

7.
Let be a bounded connected open set in RN, N 2, and let –0be the Dirichlet Laplacian defined in L2(). Let > 0 be thesmallest eigenvalue of –, and let > 0 be its correspondingeigenfunction, normalized by ||||2 = 1. For sufficiently small>0 we let R() be a connected open subset of satisfying Let – 0 be the Dirichlet Laplacian on R(), and let >0and >0 be its ground state eigenvalue and ground state eigenfunction,respectively, normalized by ||||2=1. For functions f definedon , we let Sf denote the restriction of f to R(). For functionsg defined on R(), we let Tg be the extension of g to satisfying 1991 Mathematics SubjectClassification 47F05.  相似文献   

8.
Let Ek(z) be the Eisenstein series with weight k for the modulargroup SL(2, ). We prove that the zeros of Ek(ei) interlace withthe zeros of Ek+12(ei) on /2 < < 2/3. That is, any zeroof Ek(ei) lies between two consecutive zeros of Ek+12(ei) on/2 < < 2/3.  相似文献   

9.
Let G and A be finite groups with coprime orders, and supposethat A acts on G by automorphisms. Let (G, A):IrrA(G)Irr(CG(A))be the Glauberman–Isaacs correspondence. Let B A andIrrA(G). We exhibit a counterexample to the conjecture that(G, A) is an irreducible constituent of the restriction of (G,B) to CG(A). 1991 Mathematics Subject Classification 20C15.  相似文献   

10.
Let G be a transitive permutation group on a set such that,for , the stabiliser G induces on each of its orbits in \{}a primitive permutation group (possibly of degree 1). Let Nbe the normal closure of G in G. Then (Theorem 1) either N factorisesas N=GG for some , , or all unfaithful G-orbits, if any exist,are infinite. This result generalises a theorem of I. M. Isaacswhich deals with the case where there is a finite upper boundon the lengths of the G-orbits. Several further results areproved about the structure of G as a permutation group, focussingin particular on the nature of certain G-invariant partitionsof . 1991 Mathematics Subject Classification 20B07, 20B05.  相似文献   

11.
We give a representation of the dual of the space p(E,F) ofp-absolutely summing operators (1 p < + ) under certainconditions on E and F. One deduces that the space p(E, F), 1 p < + , is reflexive if and only if E and F are reflexive.We improve results of Gordon, Lewis, Retherford and Saphar.  相似文献   

12.
Let be an infinite cardinal and let G = 2. Now let β Gbe the Stone–ech compactification of G as a discrete semigroup,and let =<cβ G {xG\{0}:minsupp (x)}. We show that thesemigroup contains no nontrivial finite group.  相似文献   

13.
In this paper, the behaviour of the positive eigenfunction of in u| = 0, p > 1, isstudied near its critical points. Under some convexity and symmetryassumptions on , is seen to have a unique critical point atx = 0; also, the behaviour of both and is determined nearby.Positive solutions u to some general problems –pu = f(u)in , u| = 0, are also considered, with some convexity restrictionson u. 2000 Mathematics Subject Classification 35B05 (primary),35J65, 35J70 (secondary).  相似文献   

14.
Packing, Tiling, Orthogonality and Completeness   总被引:3,自引:0,他引:3  
Let Rd be an open set of measure 1. An open set DRd is calleda ‘tight orthogonal packing region’ for if DDdoes not intersect the zeros of the Fourier transform of theindicator function of , and D has measure 1. Suppose that isa discrete subset of Rd. The main contribution of this paperis a new way of proving the following result: D tiles Rd whentranslated at the locations if and only if the set of exponentialsE = {exp 2i, x: } is an orthonormal basis for L2(). (This resulthas been proved by different methods by Lagarias, Reeds andWang [9] and, in the case of being the cube, by Iosevich andPedersen [3]. When is the unit cube in Rd, it is a tight orthogonalpacking region of itself.) In our approach, orthogonality ofE is viewed as a statement about ‘packing’ Rd withtranslates of a certain non-negative function and, additionally,we have completeness of E in L2() if and only if the above-mentionedpacking is in fact a tiling. We then formulate the tiling conditionin Fourier analytic language, and use this to prove our result.2000 Mathematics Subject Classification 52C22, 42B99, 11K70.  相似文献   

15.
Suppose that C1 and C2 are two simple curves joining 0 to ,non-intersecting in the finite plane except at 0 and enclosinga domain D which is such that, for all large r, has measure at most 2, where 0 < < .Suppose also that u is a non-constant subharmonic function inthe plane such that u(z) = B(|z|, u) for all large z C1 C2.Let AD(r, u) = inf { u(z):z D and | z | = r }. It is shownthat if AD(r, u) = O(1) (or AD(r, u) = o(B(r, u))), then limr B(r, u)/r/2 > 0 (or limr log B(r, u)/log r /2).  相似文献   

16.
We shall prove that for every natural number n and every cardinalnumber there exists an n-dimensional complete metric spaceXn, of weight such that every n-dimensional complete metricspace of weight is embeddable in Xn, as a closed subset.  相似文献   

17.
Bull London Math. Soc, 4 (1972), 370–372. The proof of the theorem contains an error. Before giving acorrect proof, we state two lemmas. LEMMA 1. Let K/k be a cyclic Galois extension of degree m, let generate Gal (K/k), and let (A, I, ) be defined over K. Supposethat there exists an isomorphism :(A,I,) (A, I, ) over K suchthat vm–1 ... = 1, where v is the canonical isomorphism(Am, Im, m) (A, I, ). Then (A, I, ) has a model over k, whichbecomes isomorphic to (A, I, ) over K. Proof. This follows easily from [7], as is essentially explainedon p. 371. LEMMA 2. Let G be an abelian pro-finite group and let : G Q/Z be a continuous character of G whose image has order p.Then either: (a) there exist subgroups G' and H of G such that H is cyclicof order pm for some m, (G') = 0, and G = G' x H, or (b) for any m > 0 there exists a continuous character m ofG such that pm m = . Proof. If (b) is false for a given m, then there exists an element G, of order pr for some r m, such that () ¦ 0. (Considerthe sequence dual to 0 Ker (pm) G pm G). There exists an opensubgroup Go of G such that (G0) = 0 and has order pr in G/G0.Choose H to be the subgroup of G generated by , and then aneasy application to G/G0 of the theory of finite abelian groupsshows the existence of G' (note that () ¦ 0 implies that is not a p-th. power in G). We now prove the theorem. The proof is correct up to the statement(iv) (except that (i) should read: F' k1 F'ab). To removea minor ambiguity in the proof of (iv), choose to be an elementof Gal (F'ab/k2) whose image $$\stackrel{\&macr;}{\sigma}$$ in Gal (k1/k2) generates this last group. The error occursin the statement that the canonical map v : AP A acts on pointsby sending ap a; it, of course, sends a a. The proof is correct, however, in the case that it is possibleto choose so that p = 1 (in Gal (F'/k2)). By applying Lemma 2 to G = Gal (F'ab/k2) and the map G Gal(k1/k2) one sees that only the following two cases have to beconsidered. (a) It is possible to choose so that pm = 1, for some m, andG = G' x H where G' acts trivially on k1 and H is generatedby . (b) For any m > 0 there exists a field K, F'ab K k1 k2is a cyclic Galois extension of degree pm. In the first case, we let K F'ab be the fixed field of G'.Then (A, I, ), regarded as being defined over K, has a modelover k2. Indeed, if m = 1, then this was observed above, butwhen m > 1 the same argument applies. In the second case, let : (A, I, ) (A$$\stackrel{\&macr;}{\sigma}$$, I$$\stackrel{\&macr;}{\sigma }$$, $$\stackrel{\&macr;}{\sigma}$$) be an isomorphism defined over k1 and let v ... p–1 = µ(R). If is replaced by for some Autk1((A, I, )) then is replacedby P. Thus, as µ(R) is finite, we may assume that pm–1= 1 for some m. Choose K, as in (b), to be of degree pm overk2. Let m be a generator of Gal (K/k2) whose restriction tok1 is $$\stackrel{\&macr;}{\sigma }$$. Then : (A, I, ) (A$$\stackrel{\&macr;}{\sigma }$$, I$$\stackrel{\&macr;}{\sigma}$$, $$\stackrel{\&macr;}{\sigma }$$ = (A$$\stackrel{\&macr;}{\sigma}$$m, I$$\stackrel{\&macr;}{\sigma }$$m, $$\stackrel{\&macr;}{\sigma}$$m is an isomorphism defined over K and v mpm–1, ... m =pm–1 = 1, and so, by) Lemma 1, (A, I, ) has a model overk2 which becomes isomorphic to (A, I, over K. The proof may now be completed as before. Addendum: Professor Shimura has pointed out to me that the claimon lines 25 and 26 of p. 371, viz that µ(R) is a puresubgroup of R*t, does not hold for all rings R. Thus this condition,which appears to be essential for the validity of the theorem,should be included in the hypotheses. It holds, for example,if µ(R) is a direct summand of µ(F).  相似文献   

18.
The norm of a group G is the subgroup of elements of G whichnormalise every subgroup of G. We shall denote it (G). An ascendingseries of subgroups i(G) in G may be defined recursively by:0(G) = 1 and, for i 0, i+1(G)/i(G) = (G/i(G)). For each i,the section i+1(G)/i(G) clearly contains the centre of the groupG/i(G). A result of Schenkman [8] gives a very close connectionbetween this norm series and the upper central series: i(G) i(G) 2i(G). 1991 Mathematics Subject Classification 20E15.  相似文献   

19.
In this paper we study several kinds of maximal almost disjointfamilies. In the main result of this paper we show that forsuccessor cardinals , there is an unexpected connection betweeninvariants ae(), b() and a certain cardinal invariant md(+)on +. As a corollary we get for example the following result.For a successor cardinal , even assuming that < = and 2= +, the following is not provable in Zermelo–Fraenkelset theory. There is a +-cc poset which does not collapse andwhich forces a() = + < ae() = ++ = 2. We also apply the ideasfrom the proofs of these results to study a = a() and non(M).2000 Mathematics Subject Classification 03E17 (primary), 03E05(secondary).  相似文献   

20.
Logarithmic Convexity for Supremum Norms of Harmonic Functions   总被引:1,自引:0,他引:1  
We prove the following convexity property for supremum normsof harmonic functions. Let be a domain in Rn, 0 and E a subdomainand a compact sebset of ,respectively. Then there exists a constant = (E, 0, ) (0, 1) such that for all harmonic functions u on, the inequality is valid.The case of concentric balls E plays a key role in the proof.For positive harmonic funcitons ono osuch balls, we determinethe sharp constant in the inequlity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号