首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let be a singular cardinal of regular uncountable cofinality. Let {(): < } be a continuous increasing sequence withlimit , and let =()+(), < be regular cardinals. Let I be a normal ideal on , and assume that the reduced product</I admits a cofinal -scale of ordinal functions. Then +, where =||||I is the I-norm of .  相似文献   

2.
Bull London Math. Soc, 4 (1972), 370–372. The proof of the theorem contains an error. Before giving acorrect proof, we state two lemmas. LEMMA 1. Let K/k be a cyclic Galois extension of degree m, let generate Gal (K/k), and let (A, I, ) be defined over K. Supposethat there exists an isomorphism :(A,I,) (A, I, ) over K suchthat vm–1 ... = 1, where v is the canonical isomorphism(Am, Im, m) (A, I, ). Then (A, I, ) has a model over k, whichbecomes isomorphic to (A, I, ) over K. Proof. This follows easily from [7], as is essentially explainedon p. 371. LEMMA 2. Let G be an abelian pro-finite group and let : G Q/Z be a continuous character of G whose image has order p.Then either: (a) there exist subgroups G' and H of G such that H is cyclicof order pm for some m, (G') = 0, and G = G' x H, or (b) for any m > 0 there exists a continuous character m ofG such that pm m = . Proof. If (b) is false for a given m, then there exists an element G, of order pr for some r m, such that () ¦ 0. (Considerthe sequence dual to 0 Ker (pm) G pm G). There exists an opensubgroup Go of G such that (G0) = 0 and has order pr in G/G0.Choose H to be the subgroup of G generated by , and then aneasy application to G/G0 of the theory of finite abelian groupsshows the existence of G' (note that () ¦ 0 implies that is not a p-th. power in G). We now prove the theorem. The proof is correct up to the statement(iv) (except that (i) should read: F' k1 F'ab). To removea minor ambiguity in the proof of (iv), choose to be an elementof Gal (F'ab/k2) whose image $$\stackrel{\&macr;}{\sigma}$$ in Gal (k1/k2) generates this last group. The error occursin the statement that the canonical map v : AP A acts on pointsby sending ap a; it, of course, sends a a. The proof is correct, however, in the case that it is possibleto choose so that p = 1 (in Gal (F'/k2)). By applying Lemma 2 to G = Gal (F'ab/k2) and the map G Gal(k1/k2) one sees that only the following two cases have to beconsidered. (a) It is possible to choose so that pm = 1, for some m, andG = G' x H where G' acts trivially on k1 and H is generatedby . (b) For any m > 0 there exists a field K, F'ab K k1 k2is a cyclic Galois extension of degree pm. In the first case, we let K F'ab be the fixed field of G'.Then (A, I, ), regarded as being defined over K, has a modelover k2. Indeed, if m = 1, then this was observed above, butwhen m > 1 the same argument applies. In the second case, let : (A, I, ) (A$$\stackrel{\&macr;}{\sigma}$$, I$$\stackrel{\&macr;}{\sigma }$$, $$\stackrel{\&macr;}{\sigma}$$) be an isomorphism defined over k1 and let v ... p–1 = µ(R). If is replaced by for some Autk1((A, I, )) then is replacedby P. Thus, as µ(R) is finite, we may assume that pm–1= 1 for some m. Choose K, as in (b), to be of degree pm overk2. Let m be a generator of Gal (K/k2) whose restriction tok1 is $$\stackrel{\&macr;}{\sigma }$$. Then : (A, I, ) (A$$\stackrel{\&macr;}{\sigma }$$, I$$\stackrel{\&macr;}{\sigma}$$, $$\stackrel{\&macr;}{\sigma }$$ = (A$$\stackrel{\&macr;}{\sigma}$$m, I$$\stackrel{\&macr;}{\sigma }$$m, $$\stackrel{\&macr;}{\sigma}$$m is an isomorphism defined over K and v mpm–1, ... m =pm–1 = 1, and so, by) Lemma 1, (A, I, ) has a model overk2 which becomes isomorphic to (A, I, over K. The proof may now be completed as before. Addendum: Professor Shimura has pointed out to me that the claimon lines 25 and 26 of p. 371, viz that µ(R) is a puresubgroup of R*t, does not hold for all rings R. Thus this condition,which appears to be essential for the validity of the theorem,should be included in the hypotheses. It holds, for example,if µ(R) is a direct summand of µ(F).  相似文献   

3.
Quasi-Affinity in certain Classes of Operators   总被引:1,自引:0,他引:1  
The family of operators S + V (, C, Re > 0), where V isan injective S-Volterra operator (that is, [S, V[ = V2) and— AV–1 generates a uniformly bounded C0-semigroup,is studied in the context of similarity and of the weaker quasi-affinityrelation. It is shown that S is similar to S + V for all , C,Re > 1, and is a quasi-affine transform of S + tV for allt 0 and 0 < < 1.  相似文献   

4.
Let be an infinite cardinal and let G = 2. Now let β Gbe the Stone–ech compactification of G as a discrete semigroup,and let =<cβ G {xG\{0}:minsupp (x)}. We show that thesemigroup contains no nontrivial finite group.  相似文献   

5.
For each d2 we construct a connected open set Rd such that = int (clos()), and for each k 1 and each p [1, ), the subsetWk, () fails to be dense in the Sobolev space Wk, p(), in thenorm of Wk, p(). 1991 Mathematics Subject Classification 46E35,46F05.  相似文献   

6.
Packing, Tiling, Orthogonality and Completeness   总被引:3,自引:0,他引:3  
Let Rd be an open set of measure 1. An open set DRd is calleda ‘tight orthogonal packing region’ for if DDdoes not intersect the zeros of the Fourier transform of theindicator function of , and D has measure 1. Suppose that isa discrete subset of Rd. The main contribution of this paperis a new way of proving the following result: D tiles Rd whentranslated at the locations if and only if the set of exponentialsE = {exp 2i, x: } is an orthonormal basis for L2(). (This resulthas been proved by different methods by Lagarias, Reeds andWang [9] and, in the case of being the cube, by Iosevich andPedersen [3]. When is the unit cube in Rd, it is a tight orthogonalpacking region of itself.) In our approach, orthogonality ofE is viewed as a statement about ‘packing’ Rd withtranslates of a certain non-negative function and, additionally,we have completeness of E in L2() if and only if the above-mentionedpacking is in fact a tiling. We then formulate the tiling conditionin Fourier analytic language, and use this to prove our result.2000 Mathematics Subject Classification 52C22, 42B99, 11K70.  相似文献   

7.
Let be a bounded connected open set in RN, N 2, and let –0be the Dirichlet Laplacian defined in L2(). Let > 0 be thesmallest eigenvalue of –, and let > 0 be its correspondingeigenfunction, normalized by ||||2 = 1. For sufficiently small>0 we let R() be a connected open subset of satisfying Let – 0 be the Dirichlet Laplacian on R(), and let >0and >0 be its ground state eigenvalue and ground state eigenfunction,respectively, normalized by ||||2=1. For functions f definedon , we let Sf denote the restriction of f to R(). For functionsg defined on R(), we let Tg be the extension of g to satisfying 1991 Mathematics SubjectClassification 47F05.  相似文献   

8.
The semilinear elliptic eigenvalue problem with superlinearpure power nonlinearity is considered. This problem is treatedfrom the standpoint of L2-theory and the precise asymptoticformula for the eigenvalue parameter = () as is established,where is the L2-norm of the solution u associated with . 2000Mathematics Subject Classification 35P30 (primary), 35J60 (secondary).  相似文献   

9.
Metric Entropy of Convex Hulls in Hilbert Spaces   总被引:2,自引:0,他引:2  
We show in this note the following statement which is an improvementover a result of R. M. Dudley and which is also of independentinterest. Let X be a set of a Hilbert space with the propertythat there are constants , >0, and for each n N, the setX can be covered by at most n balls of radius n. Then,for each n N, the convex hull of X can be covered by 2n ballsof radius . The estimate is best possible for all n N, apart from the value c=c(, , X).In other words, let N(, X), >0, be the minimal number ofballs of radius covering the set X. Then the above result isequivalent to saying that if N(, X)=O(–1/) as 0, thenfor the convex hull conv (X) of X, N(, conv (X)) =O(exp(–2/(12))). Moreover, we give an interplay between several coveringparameters based on coverings by balls (entropy numbers) andcoverings by cylindrical sets (Kolmogorov numbers). 1991 MathematicsSubject Classification 41A46.  相似文献   

10.
The norm of a group G is the subgroup of elements of G whichnormalise every subgroup of G. We shall denote it (G). An ascendingseries of subgroups i(G) in G may be defined recursively by:0(G) = 1 and, for i 0, i+1(G)/i(G) = (G/i(G)). For each i,the section i+1(G)/i(G) clearly contains the centre of the groupG/i(G). A result of Schenkman [8] gives a very close connectionbetween this norm series and the upper central series: i(G) i(G) 2i(G). 1991 Mathematics Subject Classification 20E15.  相似文献   

11.
Let be a pseudoconvex domain in C2 with smooth boundary, andlet be a smooth embedded analytic disc intersecting transversally along the curve A. Then A isknotted in . 2000 Mathematics Subject Classification 32U99.  相似文献   

12.
Professor W. F. Hammond has kindly drawn my attention to a blunderin 4 of the above paper. He referred to the ( – 2r) xß submatrix D of the skew-symmetric matrix displayednear the top of page 181, of which it is asserted that it issquare and non-singular, and pointed out that, from the factthat the matrix of which D forms part is regular, it may onlybe deduced that the columns of D are linearly independent; thatis, it only follows that – 2r ß. The validity of the equation – 2r = ß is essentialto the succeeding argument and, fortunately, may be establishedby alternative means. Using the nomenclature of the paper, wehave on F the set 1*, ..., 2r*, 1*, ..., ß* of independent3-cycles (independent because they cut independent 1-cycleson the curve C), which may be completed, to form a basis forsuch cycles on F, by a further set 1', ..., 2q–2r–pof independent 3-cycles, each of which meets C in a cycle homologousto zero on C. The cycles 1*, ..., * are invariant cycles andare independent on F so that, if > 2r + ß, thereis a non-trivial linear combination * of these having zero intersectionon C with each of the cycles 1*, ..., 2r*, 1*, ..., ß*.Thus we have. (* .k*)c = 0 = (* .i*)c i.e. (* .k*) = 0 = (* .i* on F (1 k 2r; 1 i ß). Furthermore, (j . C) 0 on C and we have (* .j .C)C = 0 i.e. (* .j) = 0 on F (1 j 2q – 2r – ß). It now follows that * 0 on F (for it has zero intersectionwith every member of a basic set of 3-cycles on F). But thiscondradicts the assumption that * is a non-trivial linear combinationof the independent cycles 1*, ...,*; and hence < 2r + ß.  相似文献   

13.
This paper treats the problem of minimizing the norm of vectorfields in L1 with prescribed divergence. The ridge of . playsan important role in the analysis, and in the case where R2is a polygonal domain, the ridge is thoroughly analysed andsome examples are presented. In the case where Rn is a Lipschitzdomain and the divergence is a finite positive Borel measure,the infimum is calculated, and it is shown that if an extremalexists, then it is of the form 1 = –Fd, where F is a nonnegativefunction and d(x) is the distance from x to the boundary .Finally, if R2 is a polygonal domain and the measure is representedby a nonnegative continuous function, then an explicit expressionfor the extremal is given, and it is proven that this extremalis unique.  相似文献   

14.
This is an expository paper giving a complete proof of a theoremof Saharon Shelah: if 2 < for all n < , then 2 < 4.  相似文献   

15.
Logarithmic Convexity for Supremum Norms of Harmonic Functions   总被引:1,自引:0,他引:1  
We prove the following convexity property for supremum normsof harmonic functions. Let be a domain in Rn, 0 and E a subdomainand a compact sebset of ,respectively. Then there exists a constant = (E, 0, ) (0, 1) such that for all harmonic functions u on, the inequality is valid.The case of concentric balls E plays a key role in the proof.For positive harmonic funcitons ono osuch balls, we determinethe sharp constant in the inequlity.  相似文献   

16.
Let N be a bounded open set and C( ). Assume that has an extensionC() such that H–1().Then by the Riesz representation theorem there exists a unique

We show that u+ coincides with the Perron solutionof the Dirichlet problem

This extends recent results by Hildebrandt [Math. Nachr. 278(2005), 141–144] and Simader [Math. Nachr. 279 (2006),415–430], and also gives a possible answer to Hadamard'sobjection against Dirichlet's principle.  相似文献   

17.
The aim of this paper is to show the existence of solutionswith an arbitrarily large number of bubbles for the slightlysuper-critical elliptic problem in , subject to the conditions that u > 0 in , and u = 0on , where > 0 is a small parameter and RN is a boundeddomain with certain symmetries, for instance an annulus or atorus in R3. 2000 Mathematics Subject Classification 35J25 (primary);35J20, 35J60 (secondary).  相似文献   

18.
A sharp geometric condition is given for a bounded domain tohave the property that for each superharmonic function u ona neighbourhood of , there is a superharmonic function on Rnsuch that = u on .  相似文献   

19.
Let be a projective unitary representation of a countable groupG on a separable Hilbert space H. If the set B of Bessel vectorsfor is dense in H, then for any vector x H the analysis operatorx makes sense as a densely defined operator from B to 2(G)-space.Two vectors x and y are called -orthogonal if the range spacesof x and y are orthogonal, and they are -weakly equivalent ifthe closures of the ranges of x and y are the same. These propertiesare characterized in terms of the commutant of the representation.It is proved that a natural geometric invariant (the orthogonalityindex) of the representation agrees with the cyclic multiplicityof the commutant of (G). These results are then applied to Gaborsystems. A sample result is an alternate proof of the knowntheorem that a Gabor sequence is complete in L2d) ifand only if the corresponding adjoint Gabor sequence is 2-linearlyindependent. Some other applications are also discussed.  相似文献   

20.
We prove that the crossed product C*-algebra C*r(, ) of a freegroup with its boundary sits naturally between the reducedgroup C*-algebra C*r and its injective envelope I(C*r). In otherwords, we have natural inclusion C*r C*r(, ) I(C*r) of C*-algebras.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号