首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper provides further results on the perfect state transfer in integral circulant graphs (ICG graphs). The non-existence of PST is proved for several classes of ICG graphs containing an isolated divisor d0, i.e. the divisor which is relatively prime to all other divisors from dD?{d0}. The same result is obtained for classes of integral circulant graphs having the NSF property (i.e. each n/d is square-free, for every dD). A direct corollary of these results is the characterization of ICG graphs with two divisors, which have PST. A similar characterization is obtained for ICG graphs where each two divisors are relatively prime. Finally, it is shown that ICG graphs with the number of vertices n=2p2 do not have PST.  相似文献   

2.
The energy of a graph is the sum of the moduli of the eigenvalues of its adjacency matrix. We study the energy of integral circulant graphs, also called gcd graphs, which can be characterized by their vertex count n and a set D of divisors of n in such a way that they have vertex set Zn and edge set {{a,b}:a,bZn,gcd(a-b,n)∈D}. Using tools from convex optimization, we analyze the maximal energy among all integral circulant graphs of prime power order ps and varying divisor sets D. Our main result states that this maximal energy approximately lies between s(p-1)ps-1 and twice this value. We construct suitable divisor sets for which the energy lies in this interval. We also characterize hyperenergetic integral circulant graphs of prime power order and exhibit an interesting topological property of their divisor sets.  相似文献   

3.
The distance energy of a graph G is a recently developed energy-type invariant, defined as the sum of absolute values of the eigenvalues of the distance matrix of G. There was a vast research for the pairs and families of non-cospectral graphs having equal distance energy, and most of these constructions were based on the join of graphs. A graph is called circulant if it is Cayley graph on the circulant group, i.e. its adjacency matrix is circulant. A graph is called integral if all eigenvalues of its adjacency matrix are integers. Integral circulant graphs play an important role in modeling quantum spin networks supporting the perfect state transfer. In this paper, we characterize the distance spectra of integral circulant graphs and prove that these graphs have integral eigenvalues of distance matrix D. Furthermore, we calculate the distance spectra and distance energy of unitary Cayley graphs. In conclusion, we present two families of pairs (G1,G2) of integral circulant graphs with equal distance energy - in the first family G1 is subgraph of G2, while in the second family the diameter of both graphs is three.  相似文献   

4.
Let D be the diameter of a graph G and let λ1 be the largest eigenvalue of its (0, 1)-adjacency matrix. We give a proof of the fact that there are exactly 69 non-trivial connected graphs with (D + 1)λ1 ? 9. These 69 graphs all have up to 10 vertices and were recently found to be suitable models for small multiprocessor interconnection networks. We also examine the suitability of integral graphs to model multiprocessor interconnection networks, especially with respect to the load balancing problem. In addition, we classify integral graphs with small values of (D + 1)λ1 in connection with the load balancing problem for multiprocessor systems.  相似文献   

5.
Given a set D of a cyclic group C, we study the chromatic number of the circulant graph G(C,D) whose vertex set is C, and there is an edge ij whenever ijD∪−D. For a fixed set D={a,b,c:a<b<c} of positive integers, we compute the chromatic number of circulant graphs G(ZN,D) for all N≥4bc. We also show that, if there is a total order of D such that the greatest common divisors of the initial segments form a decreasing sequence, then the chromatic number of G(Z,D) is at most 4. In particular, the chromatic number of a circulant graph on ZN with respect to a minimum generating set D is at most 4. The results are based on the study of the so-called regular chromatic number, an easier parameter to compute. The paper also surveys known results on the chromatic number of circulant graphs.  相似文献   

6.
The domination numbers of cylindrical grid graphs   总被引:1,自引:0,他引:1  
Let γ(Pm □ Cn) denote the domination number of the cylindrical grid graph formed by the Cartesian product of the graphs Pm, the path of length m, m ? 2 and the graph Cn, the cycle of length n, n ? 3. In this paper, methods to find the domination numbers of graphs of the form Pm □ Cn with n ? 3 and m = 2, 3 and 4 are proposed. Moreover, bounds on domination numbers of the graphs P5 □ Cn, n ? 3 are found. The methods that are used to prove that results readily lead to algorithms for finding minimum dominating sets of the above mentioned graphs.  相似文献   

7.
For a poset P=(X,≤), the upper bound graph (UB-graph) of P is the graph U=(X,EU), where uvEU if and only if uv and there exists mX such that u,vm. For a graph G, the distance two graph DS2(G) is the graph with vertex set V(DS2(G))=V(G) and u,vV(DS2(G)) are adjacent if and only if dG(u,v)=2. In this paper, we deal with distance two graphs of upper bound graphs. We obtain a characterization of distance two graphs of split upper bound graphs.  相似文献   

8.
We consider the set of all graphs on n labeled vertices with prescribed degrees D = (d1,…,dn). For a wide class of tame degree sequences D we obtain a computationally efficient asymptotic formula approximating the number of graphs within a relative error which approaches 0 as n grows. As a corollary, we prove that the structure of a random graph with a given tame degree sequence D is well described by a certain maximum entropy matrix computed from D. We also establish an asymptotic formula for the number of bipartite graphs with prescribed degrees of vertices, or, equivalently, for the number of 0‐1 matrices with prescribed row and column sums. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013  相似文献   

9.
The eccentric distance sum is a novel topological index that offers a vast potential for structure activity/property relationships. For a graph G, it is defined as ξd(G)=vVε(v)D(v), where ε(v) is the eccentricity of the vertex v and D(v)=uV(G)d(u,v) is the sum of all distances from the vertex v. Motivated by [G. Yu, L. Feng, A. Ili?, On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011) 934-944], in this paper we characterize the extremal trees and graphs with maximal eccentric distance sum. Various lower and upper bounds for the eccentric distance sum in terms of other graph invariants including the Wiener index, the degree distance, eccentric connectivity index, independence number, connectivity, matching number, chromatic number and clique number are established. In addition, we present explicit formulae for the values of eccentric distance sum for the Cartesian product, applied to some graphs of chemical interest (like nanotubes and nanotori).  相似文献   

10.
For nN and DN, the distance graph has vertex set {0,1,…,n−1} and edge set {ij∣0≤i,jn−1,|ji|∈D}. Note that the important and very well-studied circulant graphs coincide with the regular distance graphs.A fundamental result concerning circulant graphs is that for these graphs, a simple greatest common divisor condition, their connectivity, and the existence of a Hamiltonian cycle are all equivalent. Our main result suitably extends this equivalence to distance graphs. We prove that for a finite set D of order at least 2, there is a constant cD such that the greatest common divisor of the integers in D is 1 if and only if for every n, has a component of order at least ncD if and only if for every ncD+3, has a cycle of order at least ncD. Furthermore, we discuss some consequences and variants of this result.  相似文献   

11.
A set W of the vertices of a connected graph G is called a resolving set for G if for every two distinct vertices u, v ∈ V (G) there is a vertex w ∈ W such that d(u, w) ≠ d(v, w). A resolving set of minimum cardinality is called a metric basis for G and the number of vertices in a metric basis is called the metric dimension of G, denoted by dim(G). For a vertex u of G and a subset S of V (G), the distance between u and S is the number min s∈S d(u, s). A k-partition Π = {S 1 , S 2 , . . . , S k } of V (G) is called a resolving partition if for every two distinct vertices u, v ∈ V (G) there is a set S i in Π such that d(u, Si )≠ d(v, Si ). The minimum k for which there is a resolving k-partition of V (G) is called the partition dimension of G, denoted by pd(G). The circulant graph is a graph with vertex set Zn , an additive group of integers modulo n, and two vertices labeled i and j adjacent if and only if i-j (mod n) ∈ C , where CZn has the property that C =-C and 0 ■ C. The circulant graph is denoted by Xn, Δ where Δ = |C|. In this paper, we study the metric dimension of a family of circulant graphs Xn, 3 with connection set C = {1, n/2 , n-1} and prove that dim(Xn, 3 ) is independent of choice of n by showing that dim(Xn, 3 ) ={3 for all n ≡ 0 (mod 4), 4 for all n ≡ 2 (mod 4). We also study the partition dimension of a family of circulant graphs Xn,4 with connection set C = {±1, ±2} and prove that pd(Xn, 4 ) is independent of choice of n and show that pd(X5,4 ) = 5 and pd(Xn,4 ) ={3 for all odd n ≥ 9, 4 for all even n ≥ 6 and n = 7.  相似文献   

12.
Let Gn,m be the family of graphs with n vertices and m edges, when n and m are previously given. It is well-known that there is a subset of Gn,m constituted by graphs G such that the vertex connectivity, the edge connectivity, and the minimum degree are all equal. In this paper, S(ab)-classes of connected (ab)-linear graphs with n vertices and m edges are described, where m is given as a function of a,bN/2. Some of them have extremal graphs for which the equalities above are extended to algebraic connectivity. These graphs are Laplacian integral although they are not threshold graphs. However, we do build threshold graphs in S(ab).  相似文献   

13.
A sequence d=(d1,d2,…,dn) is graphic if there is a simple graph G with degree sequence d, and such a graph G is called a realization of d. A graphic sequence d is line-hamiltonian if d has a realization G such that L(G) is hamiltonian, and is supereulerian if d has a realization G with a spanning eulerian subgraph. In this paper, it is proved that a nonincreasing graphic sequence d=(d1,d2,…,dn) has a supereulerian realization if and only if dn≥2 and that d is line-hamiltonian if and only if either d1=n−1, or ∑di=1di≤∑dj≥2(dj−2).  相似文献   

14.
Interleaving is used for error-correcting on a bursty noisy channel. Given a graph G describing the topology of the channel, we label the vertices of G so that each label-set is sufficiently sparse. The interleaving scheme corrects for any error burst of size at most t; it is a labeling where the distance between any two vertices in the same label-set is at least t.We consider interleaving schemes on infinite circulant graphs with two offsets 1 and d. In such a graph the vertices are integers; edge ij exists if and only if |ij|∈{1,d}. Our goal is to minimize the number of labels used.Our constructions are covers of the graph by the minimal number of translates of some label-set S. We focus on minimizing the index of S, which is the inverse of its density rounded up. We establish lower bounds and prove that our constructions are optimal or almost optimal, both for the index of S and for the number of labels.  相似文献   

15.
Let 1?s1<s2<?<sk?⌊n/2⌋ be given integers. An undirected even-valent circulant graph, has n vertices 0,1,2,…, n-1, and for each and j(0?j?n-1) there is an edge between j and . Let stand for the number of spanning trees of . For this special class of graphs, a general and most recent result, which is obtained in [Y.P. Zhang, X. Yong, M. Golin, [The number of spanning trees in circulant graphs, Discrete Math. 223 (2000) 337-350]], is that where an satisfies a linear recurrence relation of order 2sk-1. And, most recently, for odd-valent circulant graphs, a nice investigation on the number an is [X. Chen, Q. Lin, F. Zhang, The number of spanning trees in odd-valent circulant graphs, Discrete Math. 282 (2004) 69-79].In this paper, we explore further properties of the numbers an from their combinatorial structures. Comparing with the previous work, the differences are that (1) in finding the coefficients of recurrence formulas for an, we avoid solving a system of linear equations with exponential size, but instead, we give explicit formulas; (2) we find the asymptotic functions and therefore we ‘answer’ the open problem posed in the conclusion of [Y.P. Zhang, X. Yong, M. Golin, The number of spanning trees in circulant graphs, Discrete Math. 223 (2000) 337-350]. As examples, we describe our technique and the asymptotics of the numbers.  相似文献   

16.
Graphs with (kτ)-regular sets and equitable partitions are examples of graphs with regularity constraints. A (kτ)-regular set of a graph G is a subset of vertices S ⊆ V(G) inducing a k-regular subgraph and such that each vertex not in S has τ neighbors in S. The existence of such structures in a graph provides some information about the eigenvalues and eigenvectors of its adjacency matrix. For example, if a graph G has a (k1τ1)-regular set S1 and a (k2τ2)-regular set S2 such that k1 − τ1 = k2 − τ2 = λ, then λ is an eigenvalue of G with a certain eigenvector. Additionally, considering primitive strongly regular graphs, a necessary and sufficient condition for a particular subset of vertices to be (kτ)-regular is introduced. Another example comes from the existence of an equitable partition in a graph. If a graph G, has an equitable partition π then its line graph, L(G), also has an equitable partition, , induced by π, and the adjacency matrix of the quotient graph is obtained from the adjacency matrix of G/π.  相似文献   

17.
We consider two classes of graphs: (i) trees of order n and diameter d =n − 3 and (ii) unicyclic graphs of order n and girth g = n − 2. Assuming that each graph within these classes has two vertices of degree 3 at distance k, we order by the index (i.e. spectral radius) the graphs from (i) for any fixed k (1 ? k ? d − 2), and the graphs from (ii) independently of k.  相似文献   

18.
In Wang and Xu (2006) [15] and [16] the authors introduced a family of graphs Hn and gave some methods for finding graphs among this family that are determined by their generalized spectra. This paper is a continuation of our previous work. We further show that almost all graphs in Hn are determined by their generalized spectra. This gives some evidences for the conjecture that almost all graphs are determined by their generalized spectra.  相似文献   

19.
Let T(G) be the number of spanning trees in graph G. In this note, we explore the asymptotics of T(G) when G is a circulant graph with given jumps.The circulant graph is the 2k-regular graph with n vertices labeled 0,1,2,…,n−1, where node i has the 2k neighbors i±s1,i±s2,…,i±sk where all the operations are . We give a closed formula for the asymptotic limit as a function of s1,s2,…,sk. We then extend this by permitting some of the jumps to be linear functions of n, i.e., letting si, di and ei be arbitrary integers, and examining
  相似文献   

20.
In this work, we study the fundamental group of dual graph of a planar graph. Moreover, we show that a planar graph G has no cut vertex if and only if N(Π(D(G))) = N(Π(D(G − v))) − 1 for any v ∈ V(G). Some applications relevant to quantum space time are indicated. Our results generalize and extend results in paper [1] [S.I. Nada, E.H. Hamouda, Fundamental group of dual graphs and applications to quantum space time, Chaos Soliton Fractals 42 (2009) 500-503].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号