首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
使用含裂纹复变基本解,虚边界无网格伽辽金法被进一步推广应用于弹性材料的单裂纹问题求解.为了清晰地说明单裂纹问题的虚边界元法实现过程,单裂纹问题的虚边界元法示意图、复变坐标平面下含裂纹问题的复变位移和复变面力基本解示意图被展示.含裂纹复变基本解,因自动满足裂纹处边界条件,故使用虚边界无网格伽辽金法计算单裂纹问题,无需在裂纹处布置节点或单元.给出含裂纹复变基本解中的Φ'(x)的详细表达式、裂纹左右裂尖应力强度因子的虚边界无网格离散公式,方便了其他学者使用本方法计算裂纹问题.数值计算两端受拉长方形钢板中心含有裂纹的应力强度因子的算例,计算结果证明了本方法的精确性与稳定性.  相似文献   

2.
采用复变函数理论和边界配置方法,分析计算了Kirchhoff板的弯曲断裂问题.假设了位移及内力的复变函数式,它们能满足一系列的基本方程和支配条件,例如域内的平衡方程、裂纹表面的边界条件、裂纹尖端的应力奇异性质.这样,仅板边界的边界条件需要考虑.它们可用边界配置法和最小二乘法近似满足.对不同边界条件和载荷情形进行了分析计算.数值算例表明,本文方法精度较高,计算量小,是一种有效的半解析、半数值计算方法.  相似文献   

3.
求解双材料裂纹结构全域应力场的扩展边界元法   总被引:3,自引:3,他引:0       下载免费PDF全文
在线弹性理论中,复合材料裂纹尖端具有多重应力奇异性,常规数值方法不易求解.该文建立的扩展边界元法(XBEM)对围绕尖端区域位移函数采用自尖端径向距离r的渐近级数展开式表达,其幅值系数作为基本未知量,而尖端外部区域采用常规边界元法离散方程.两方程联立求解可获得裂纹结构完整的位移和应力场.对两相材料裂纹结构尖端的两个材料域分别采用合理的应力特征对,然后对其进行计算,通过计算结果的对比分析,表明了扩展边界元法求解两相材料裂纹结构全域应力场的准确性和有效性.  相似文献   

4.
均布载荷作用下各向异性固支梁的解析解   总被引:2,自引:0,他引:2  
针对均布载荷作用下的各向异性梁在两端固支条件下的平面应力问题,给出了一个求解应力和位移解析解的方法.该方法构造了一个含待定系数的应力函数,通过Airy应力函数解法,给出了含待定系数的应力和位移通式.对固支端边界条件采用两种处理办法.利用应力和位移边界条件,确定应力函数中的待定系数,得到了应力和位移的解析表达式.结果表明,该解析解与有限元数值结果相比,两者较为吻合.该解析解是对弹性理论中相关经典例题的补充.  相似文献   

5.
含椭圆孔或裂纹压电介质平面问题的基本解   总被引:3,自引:0,他引:3  
应用复变函数的方法,并基于精确的电边界条件,导出了含一椭圆孔或裂纹的横观各向同性压电体在任意集中力和集中电荷作用下的复变函数解,即Cren函数解·叠加该解,得到了裂纹表面作用任意集中载荷或分布载荷时的一般解·这些解不但澄清了从前文献中一些不合理的结果,同时也为应用边界元法求解更复杂的压电介质断裂力学问题提供了基本解·  相似文献   

6.
研究了一端固支另一端简支连续变厚度梁在静力荷载作用下的应力和位移分布.通过引入单位脉冲函数和Dirae函数,将固支边等效为简支边与未知水平反力的叠加,利用平面应力问题的基本方程,导出满足控制微分方程及左右两端边界条件的位移函数的一般解,对上下表面的边界方程作Fourier级数展开,结合固支边位移为O的条件确定待定系数,得到的解是高精度的.数值结果与商业有限元软件ANSYS进行了比较,显示出很好的精度.  相似文献   

7.
本文用弹性理论复变函数方法讨论了在内部任意位置含直线裂纹的有限圆盘在一般载荷作用下的平面问题,得到了复应力函数和应力强度因子用级数表示的一般表达式,并对此问题讨论了三种特殊情形,即裂纹受均布压应力,均布剪应力和圆盘匀速旋转的情形,其中还给出了计算应力强度因子的近似式.计算结果表明,对位于圆盘内部且不靠近外边界的中、小裂纹,这些近似式给出好的或较好的近似.  相似文献   

8.
多裂纹问题计算分析的本征COD边界积分方程方法   总被引:3,自引:3,他引:0       下载免费PDF全文
针对多裂纹问题,若采用常规的数值求解技术,计算效率较低.为实现多裂纹问题的大规模数值模拟,建立了本征裂纹张开位移(crack opening displacement, COD)边界积分方程及其迭代算法,并引入Eshelby矩阵的定义,将多裂纹分为近场裂纹和远场裂纹来处理裂纹间的相互影响.以采用常单元作为离散单元的快速多极边界元法为参照,对提出的计算模型和迭代算法进行了数值验证.结果表明,本征COD边界积分方程方法在处理多裂纹问题时取得较大的改进,其计算效率显著高于传统的边界元法和快速多极边界元法.  相似文献   

9.
对构成裂纹尖端附近有限应力集中解析函数的方法进行了综述.含裂纹平面问题的应力函数可以用无理函数和指数函数两种型式表示.对单材料裂纹,将裂纹长度作为参数,对无理函数型解析函数采用直接加权积分可以消除裂纹尖端应力的奇异性,构造有限连续的应力函数和尖劈型的张开位移函数.对指数函数型解析函数的间接积分适用于界面裂纹问题,但会使积分区间的应力分布出现正负反转和不合理的张开位移形状;结合选择不同权函数的叠加可以得到满足精度要求的有限应力集中解析函数.给出了中心裂纹和对称边裂纹在面内拉伸、剪切和弯曲等6种受力状态下的基本解.阐述了作为解析函数何以回避裂纹尖端应力奇异性的理由.  相似文献   

10.
文丕华 《应用数学和力学》1992,13(12):1117-1126
本文采用镜相法,推导出了正交各向异性半平面作用集中载荷的理论解,给出了常单元系数矩阵表达式,为采用边界元法求解半平面问题提供了必要的公式.特解表达形式简洁,对边界元间接法常单元和高次单元各积分均可求出其原函数,可避免计算程序中的定积分数值计算过程.  相似文献   

11.
This paper derives an explicit series approximation solution for the optimal exercise boundary of an American put option by means of a new analytical method for strongly nonlinear problems, namely the homotopy analysis method (HAM). The Black–Sholes equation subject to the moving boundary conditions for an American put option is transferred into an infinite number of linear sub-problems in a fixed domain through the deformation equations. Different from perturbation/asymptotic approximations, the HAM approximation can be applicable for options with much longer expiry. Accuracy tests are made in comparison with numerical solutions. It is found that the current approximation is as accurate as many numerical methods. Considering its explicit form of expression, it can bring great convenience to the market practitioners.  相似文献   

12.
For quasilinear systems of hyperbolic equations, the nonclassical boundary value problem of controlling solutions with the help of boundary conditions is considered. Previously, this problem was extensively studied in the case of the simplest hyperbolic equations, namely, the scalar wave equation and certain linear systems. The corresponding problem formulations and numerical solution algorithms are extended to nonlinear (quasilinear and conservative) systems of hyperbolic equations. Some numerical (grid-characteristic) methods are considered that were previously used to solve the above problems. They include explicit and implicit conservative difference schemes on compact stencils that are linearizations of Godunov’s method. The numerical algorithms and methods are tested as applied to well-known linear examples.  相似文献   

13.
An equilibrium boundary element method is proposed for solving boundary-value problems in the theory of elasticity, thermo-elasticity, the dynamical theory of elasticity, bar torsion calculations, and the bending of a plate. The idea is to use simultaneously the method of constructing bundles of functions which exactly satisfy the equilibrium equations, the boundary variational equations of mechanics, and the methods of discrete finite-element approximation. The variational method of constructing the resolving boundary equations ensures that the linear system is symmetric and easily coupled to the finite-element method. Since volume integrals are eliminated the dimensions of the problem are reduced by one, but, unlike the boundary element method, there is no need to know the fundamental solutions. The solution of some bar torsion and plate bending problems confirms the high numerical efficiency of the method.  相似文献   

14.
入水冲击问题变分原理及其它   总被引:3,自引:0,他引:3  
首先建立入水前后两个衔接阶段的较为严密的场方程.再得到与之对应的各类变分原理,界限定理,第二阶段问题的边界积分方程.证明了解的存在性并提供了求解实施方案.最后以船舶兴波阻力问题的算例,论证了第二阶段问题的一种特殊应用及其正确性.从而为求取较为精确的入水冲击问题基本方程的变分有限元及边界元方法奠定了严密的理论基础.  相似文献   

15.
The two-dimensional incompressible fluid flow problems governed by the velocity–vorticity formulation of the Navier–Stokes equations were solved using the radial basis integral (RBIE) equation method. The RBIE is a meshless method based on the multi-domain boundary element method with overlapping subdomains. It solves at each node for the potential and its spatial derivatives. This feature of the RBIE is advantageous in solving the velocity–vorticity formulation of the Navier–Stokes equations since the calculated velocity gradients can be used to compute the vorticity that is prescribed as a boundary condition to the vorticity transport equation. The accuracy of the numerical solution was examined by solving the test problem with known analytical solution. Two benchmark problems, i.e. the lid driven cavity flow and the thermally driven cavity flow were also solved. The numerical results obtained using the RBIE showed very good agreement with the benchmark solutions.  相似文献   

16.
We investigate the use of method of fundamental solutions (MFS)for the numerical solution of Signorini boundary value problems.The MFS is an ideal candidate for solving such problems becauseinequality conditions alternating at unknown points of the boundarycan be incorporated naturally into the least-squares minimizationscheme associated with the MFS. To demonstrate its efficiency,we apply the method to two Signorini problems. The first isa groundwater flow problem related to percolation in gentlysloping beaches, and the second is an electropainting application.For both problems, the results are in close agreement with previouslyreported numerical solutions.  相似文献   

17.
In this paper the boundary integral expression for a one-dimensional wave equation with homogeneous boundary conditions is developed. This is done using the time dependent fundamental solution of the corresponding hyperbolic partial differential equation. The integral expression developed is a generalized function with the same form as the well-known D'Alembert formula. The derivatives of the solution and some useful invariants on the characteristics of the partial differential equation are also calculated.The boundary element method is applied to find the numerical solution. The results show excellent agreement with analytical solutions.A multi-step procedure for large time steps which can be used in the boundary element method is also described.In addition, the way in which boundary conditions are introduced during the time dependent process is explained in detail. In the Appendix the main properties of Dirac's delta function and the Heaviside unit step function are described.  相似文献   

18.
A new boundary integral equation formulation for solving plane elasticity problems involving orthotropic media is presented in this paper. Based on the real variable fundamental solutions of the considered problems, a limit theorem for the transformation from domain integral equations into boundary integral equations (BIEs) and a novel decomposition technique to the fundamental solutions, the regularized BIEs with indirect unknowns, which do not involve the direct calculation of CPV and HFP integrals, are established. The limiting process is done in global coordinates and no separate numerical treatment for strong and weak singular integrals was necessary. The current method does not need to transform the considered problems into isotropic ones as is normally done in the existing literature, so no inverse transform is required. The numerical implementation is carried out using both discontinuous quadratic elements and exact elements, which is developed to model its boundary with negligible error. The validity of the proposed scheme is demonstrated by three numerical examples. Excellent agreement between the numerical results and exact solutions was obtained even with using small amounts of element.  相似文献   

19.
张然 《计算数学》2020,42(1):1-17
本文考虑弱有限元(简称WG)方法在线弹性问题中的应用.WG方法是传统有限元方法的推广,用于偏微分方程的数值求解.和传统有限元一样,它的基本思想源于变分原理.WG方法的特点是使用在剖分单元内部和剖分单元边界上分别有定义的分片多项式函数(即弱函数)作为近似函数来逼近真解,并针对弱函数定义相应的弱微分算子代入数值格式进行计算.除此之外,WG方法允许在数值格式中引进稳定子以实现近似函数的弱连续性.WG方法具有允许使用任意多边形或多面体剖分,数值格式与逼近函数构造简单,易于满足相应的稳定性条件等优点.本文考虑WG方法在求解线弹性问题中的应用.围绕线弹性问题数值求解中常见的三个问题,即:数值格式的强制性,闭锁性,应力张量的对称性介绍WG方法在线弹性问题求解中的应用.  相似文献   

20.
Some meshless methods have been applied to the numerical solution of boundary value problems involving the Helmholtz equation. In this work, we focus on the method of fundamental solutions and the plane waves method. It is well known that these methods can be highly accurate assuming smoothness of the domains and the boundary data. However, the matrices involved are often ill-conditioned and the effect of this ill-conditioning may drastically reduce the accuracy. In this work, we propose a numerical algorithm to reduce the ill-conditioning in both methods. The idea is to perform a suitable change of basis. This allows to obtain new basis functions that span exactly the same space as the original meshless method, but are much better conditioned. In the case of circular domains, this technique allows to obtain errors close to machine precision, with condition numbers of order O(1), independently of the number of basis functions in the expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号