首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the Trefftz method of fundamental solution (FS), called the method of fundamental solution (MFS), is used for biharmonic equations. The bounds of errors are derived for the MFS with Almansi’s fundamental solutions (denoted as the MAFS) in bounded simply connected domains. The exponential and polynomial convergence rates are obtained from highly and finitely smooth solutions, respectively. The stability analysis of the MAFS is also made for circular domains. Numerical experiments are carried out for both smooth and singularity problems. The numerical results coincide with the theoretical analysis made. When the particular solutions satisfying the biharmonic equation can be found, the method of particular solutions (MPS) is always superior to the MFS and the MAFS, based on numerical examples. However, if such singular particular solutions near the singular points do not exist, the local refinement of collocation nodes and the greedy adaptive techniques can be used for seeking better source points. Based on the computed results, the MFS using the greedy adaptive techniques may provide more accurate solutions for singularity problems. Moreover, the numerical solutions by the MAFS with Almansi’s FS are slightly better in accuracy and stability than those by the traditional MFS. Hence, the MAFS with the AFS is recommended for biharmonic equations due to its simplicity.  相似文献   

2.
The classical method of fundamental solutions (MFS) has only been used to approximate the solution of homogeneous PDE problems. Coupled with other numerical schemes such as domain integration, dual reciprocity method (with polynomial or radial basis functions interpolation), the MFS can be extended to solve the nonhomogeneous problems. This paper presents an extension of the MFS for the direct approximation of Poisson and nonhomogeneous Helmholtz problems. This can be done by using the fundamental solutions of the associated eigenvalue equations as a basis to approximate the nonhomogeneous term. The particular solution of the PDE can then be evaluated. An advantage of this mesh-free method is that the resolution of both homogeneous and nonhomogeneous equations can be combined in a unified way and it can be used for multiscale problems. Numerical simulations are presented and show the quality of the approximations for several test examples. AMS subject classification 35J25, 65N38, 65R20, 74J20  相似文献   

3.
We investigate a meshless method for the accurate and non-oscillatory solution of problems associated with two-dimensional Helmholtz-type equations in the presence of boundary singularities. The governing equation and boundary conditions are approximated by the method of fundamental solutions (MFS). It is well known that the existence of boundary singularities affects adversely the accuracy and convergence of standard numerical methods. The solutions to such problems and/or their corresponding derivatives may have unbounded values in the vicinity of the singularity. This difficulty is overcome by subtracting from the original MFS solution the corresponding singular functions, without an appreciable increase in the computational effort and at the same time keeping the same MFS approximation. Four examples for both the Helmholtz and the modified Helmholtz equations are carefully investigated and the numerical results presented show an excellent performance of the approach developed.  相似文献   

4.
In this article we describe a numerical method to solve a nonhomogeneous diffusion equation with arbitrary geometry by combining the method of fundamental solutions (MFS), the method of particular solutions (MPS), and the eigenfunction expansion method (EEM). This forms a meshless numerical scheme of the MFS‐MPS‐EEM model to solve nonhomogeneous diffusion equations with time‐independent source terms and boundary conditions for any time and any shape. Nonhomogeneous diffusion equation with complex domain can be separated into a Poisson equation and a homogeneous diffusion equation using this model. The Poisson equation is solved by the MFS‐MPS model, in which the compactly supported radial basis functions are adopted for the MPS. On the other hand, utilizing the EEM the diffusion equation is first translated to a Helmholtz equation, which is then solved by the MFS together with the technique of the singular value decomposition (SVD). Since the present meshless method does not need mesh generation, nodal connectivity, or numerical integration, the computational effort and memory storage required are minimal as compared with other numerical schemes. Test results for two 2D diffusion problems show good comparability with the analytical solutions. The proposed algorithm is then extended to solve a problem with irregular domain and the results compare very well with solutions of a finite element scheme. Therefore, the present scheme has been proved to be very promising as a meshfree numerical method to solve nonhomogeneous diffusion equations with time‐independent source terms of any time frame, and for any arbitrary geometry. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

5.
Numerical Algorithms - The method of fundamental solutions (MFS) is a numerical method for solving boundary value problems involving linear partial differential equations. It is well-known that it...  相似文献   

6.
Inverse and ill-posed problems which consist of reconstructing the unknown support of a source from a single pair of exterior boundary Cauchy data are investigated. The underlying dependent variable, e.g. potential, temperature or pressure, may satisfy the Laplace, Poisson, Helmholtz or modified Helmholtz partial differential equations (PDEs). For constant coefficients, the solutions of these elliptic PDEs are sought as linear combinations of explicitly available fundamental solutions (free-space Greens functions), as in the method of fundamental solutions (MFS). Prior to this application of the MFS, the free-term inhomogeneity represented by the intensity of the source is removed by the method of particular solutions. The resulting transmission problem then recasts as that of determining the interface between composite materials. In order to ensure a unique solution, the unknown source domain is assumed to be star-shaped. This in turn enables its boundary to be parametrized by the radial coordinate, as a function of the polar or, spherical angles. The problem is nonlinear and the numerical solution which minimizes the gap between the measured and the computed data is achieved using the Matlab toolbox routine lsqnonlin which is designed to minimize a sum of squares starting from an initial guess and with no gradient required to be supplied by the user. Simple bounds on the variables can also be prescribed. Since the inverse problem is still ill-posed with respect to small errors in the data and possibly additional ill-conditioning introduced by the spectral feature of the MFS approximation, the least-squares functional which is minimized needs to be augmented with regularizing penalty terms on the MFS coefficients and on the radial function for a stable estimation of these couple of unknowns. Thorough numerical investigations are undertaken for retrieving regular and irregular shapes of the source support from both exact and noisy input data.  相似文献   

7.
We propose in this article a numerical algorithm based on the combination of the method of fundamental solutions (MFS) and the proper generalized decomposition technique (PGD) to solve time‐dependent heat equation. The MFS is considered as a truly meshless technique well adapted for a wide range of physical problems and the PGD approach can be considered as a reduction technique based on the separated representation of the variable functions. The proposed study relates to a separation between the spatial and temporal coordinates. To show the effectiveness of the proposed algorithm, several examples are presented and compared to the reference results.  相似文献   

8.
In this study we investigate the approximation of the solutions of harmonic problems subject to Dirichlet boundary conditions by the Method of Fundamental Solutions (MFS). In particular, we study the application of the MFS to Dirichlet problems in a disk. The MFS discretization yields systems which possess special features which can be exploited by using Fast Fourier transform (FFT)-based techniques. We describe three possible formulations related to the ratio of boundary points to sources, namely, when the number of boundary points is equal, larger and smaller than the number of sources. We also present some numerical experiments and provide an efficient MATLAB implementation of the resulting algorithms.  相似文献   

9.
This work provides mathematical and numerical analyses for a spring–mass system, in which Signorini–type contact conditions and Coulomb’s friction law with thermal effects are taken into consideration. The motion of a mass attached to a viscoelastic (Kelvin–Voigt type) nonlinear spring is described by a generalized Duffing equation. Signorini contact conditions are understood as extended complementarity conditions (CCs), where convolution is incorporated, allowing to consider thermal aspects of an obstacle. We prove the existence of global weak solutions for the highly nonlinear differential equation system with all the conditions, based on the regularized differential equation and the normal compliance condition with the standard mollifier. In addition, we investigate what side effects produce higher singularities of contact forces in dynamic contact problems, which is also supported by numerical evidences. Numerical schemes are proposed and then several groups of data are selected for the display of our numerical simulations.  相似文献   

10.
We propose two algorithms involving the relaxation of either the given Dirichlet data or the prescribed Neumann data on the over‐specified boundary in the case of the alternating iterative algorithm of Kozlov et al. (USSR Comput Math Math Phys 31 (1991), 45–52) applied to the Cauchy problem for the two‐dimensional modified Helmholtz equation. The two mixed, well‐posed and direct problems corresponding to every iteration of the numerical procedure are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method. For each direct problem considered, the optimal value of the regularization parameter is selected according to the generalized cross‐validation criterion. The iterative MFS algorithms with relaxation are tested for Cauchy problems associated with the modified Helmholtz equation in two‐dimensional geometries to confirm the numerical convergence, stability, accuracy and computational efficiency of the method. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

11.
Following the success of a study on the method of fundamental solutions using an image concept [13], we extend to solve the three-dimensional Laplace problems containing spherical boundaries by using the three approaches. The case of eccentric sphere for the Laplace problem is considered. The optimal locations for the source distribution to include the foci in the MFS are also examined by using the image concept in the 3D problems. Whether a free constant is required or not in the MFS is also studied. The error distribution is discussed after comparing with the analytical solution derived by using the bispherical coordinates. Besides, the relationship between the Trefftz bases and the singularity in the MFS for the three-dimensional Laplace problems is also addressed. It is found that one source of the MFS contains several interior and exterior Trefftz sets through a degenerate kernel. On the contrary, one single Trefftz base can be superimposed by some lumped sources in the MFS through an indirect BIEM. Based on this finding, the relationship between the fictitious boundary densities of the indirect BIEM and the singularity strength in the MFS can be constructed due to the fact that the MFS is a lumped version of an indirect BIEM.  相似文献   

12.
In this paper, both analytical and semi-analytical solutions for Green’s functions are obtained by using the image method which can be seen as a special case of method of fundamental solutions (MFS). The image method is employed to solve the Green’s function for the annular, eccentric and half-plane Laplace problems. In addition, an analytical solution is derived for the fixed-free annular case. For the half-plane problem with a circular hole and an eccentric annulus, semi-analytical solutions are both obtained by using the image concept after determining the strengths of two frozen image points and a free constant by matching boundary conditions. It is found that two frozen images terminated at the two focuses in the bipolar coordinates for the problems with two circular boundaries. A boundary value problem of an eccentric annulus without sources is also considered. Error distribution is plotted after comparing with the analytical solution derived by Lebedev et al. using the bipolar coordinates. The optimal locations for the source distribution in the MFS are also examined by using the image concept. It is observed that we should locate singularities on the two focuses to obtain better results in the MFS. Besides, whether the free constant is required or not in the MFS is also studied. The results are compared well with the analytical solutions.  相似文献   

13.
We justify the method of fictitious domains for an elliptic equation with nonlinear Signorini boundary conditions. The method makes it possible to construct a family of auxiliary problems defined in a wider domain and possessing the property that their solutions converge in an appropriate sense to a solution of the original problem.  相似文献   

14.
We solve the semicoercive quasi-variational Signorini inequality that corresponds to the contact problem with friction known in the elasticity theory by a method of successive approximations. For solving auxiliary problems with a given friction occurring on each outer step of the iterative process we use the Uzawa method based on iterative proximal regularization of a modified Lagrangian functional. We study the stabilization of the sequence of auxiliary finite-element solutions obtained on outer steps of the method of successive approximations and present results of numerical calculations.  相似文献   

15.
In this article we describe an improvement in the speed of computation for the least‐squares method of fundamental solutions (MFS) by means of Greengard and Rokhlin's FMA. Iterative solution of the linear system of equations is performed for the equations given by the least‐squares formulation of the MFS. The results of applying the method to test problems from potential theory with a number of boundary points in the order of 80,000 show that the method can achieve fast solutions for the potential and its directional derivatives. The results show little loss of accuracy and a major reduction in the memory requirements compared to the direct solution method of the least squares problem with storage of the full MFS matrix. The method can be extended to the solution of overdetermined systems of equations arising from boundary integral methods with a large number of boundary integration points. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 828–845, 2003.  相似文献   

16.
This paper proposes a meshless method based on coupling the method of fundamental solutions (MFS) with quasi-interpolation for the solution of nonhomogeneous polyharmonic problems. The original problems are transformed to homogeneous problems by subtracting a particular solution of the governing differential equation. The particular solution is approximated by quasi-interpolation and the corresponding homogeneous problem is solved using the MFS. By applying quasi-interpolation, problems connected with interpolation can be avoided. The error analysis and convergence study of this meshless method are given for solving the boundary value problems of nonhomogeneous harmonic and biharmonic equations. Numerical examples are also presented to show the efficiency of the method.  相似文献   

17.
We present a meshless technique which can be seen as an alternative to the method of fundamental solutions (MFS). It calculates homogeneous solutions of the Laplacian (i.e. harmonic functions) for given boundary data by a direct collocation technique on the boundary using kernels which are harmonic in two variables. In contrast to the MFS, there is no artificial boundary needed, and there is a fairly general and complete error analysis using standard techniques from meshless methods for the recovery of functions. We present two explicit examples of harmonic kernels, a mathematical analysis providing error bounds and convergence rates, and some illustrating numerical examples.  相似文献   

18.
In this paper we propose a new iterative algorithm for the solution of a certain class of Signorini problems. Such problems arise in the modelling of a variety of physical phenomena and usually involve the determination of an unknown free boundary. Here we describe a way of locating the free boundary directly and provide a proof that the algorithm converges when used with analytic methods. The advantage of this algorithm is that it can be used in conjunction with any numerical method with minimal development of extra code. We demonstrate its application with the boundary element method to some physical problems in both two and three dimensions.  相似文献   

19.
David E. Stewart Department of Mathematics, University of Iowa, Iowa, IA 52242, USA In this work, we formulate a dynamic frictionless contact problemwith linear viscoelasticity of Kelvin–Voigt type, basedon the Signorini contact conditions. We show existence of solutions,and investigate the possibility for obtaining an energy balance.Employing time discretization and the finite-element method,we compute numerical solutions. Our numerical scheme is implementedwith non-smooth Newton's method which solves the complementarityproblem. The numerical results support the idea that the energylosses in the limit of the numerical solution are equal to thelosses due to viscosity.  相似文献   

20.
We present a numerical model for the simulation of the flow in semicircular canals (SCCs). The governing equations for the flow are solved with the method of fundamental solutions (MFS), a mesh free method for boundary value problems. We describe the flow field in a SCC with utricle, and we find a vortex that had not yet been reported in literature. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号