首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Conic Trust-Region Method for Nonlinearly Constrained Optimization   总被引:5,自引:0,他引:5  
Trust-region methods are powerful optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. Can we combine their advantages to form a more powerful method for constrained optimization? In this paper we give a positive answer and present a conic trust-region algorithm for non-linearly constrained optimization problems. The trust-region subproblem of our method is to minimize a conic function subject to the linearized constraints and the trust region bound. The use of conic functions allows the model to interpolate function values and gradient values of the Lagrange function at both the current point and previous iterate point. Since conic functions are the extension of quadratic functions, they approximate general nonlinear functions better than quadratic functions. At the same time, the new algorithm possesses robust global properties. In this paper we establish the global convergence of the new algorithm under standard conditions.  相似文献   

2.
1引言本文考虑的无约束最优化问题为(?)f(x),(1.1)其中f(x)为连续可微函数.解此问题的很多算法一般都采用二次函数模型去逼近f(x) ([10],[15]).对于一些非二次性态强、曲率变化剧烈的函数,用二次函数模型去逼近可能效果不好,因此Davidon于1980年首次提出了解无约束优化问题的锥模型方法.锥模型是二次模型的推广,比二次函数具有更多的自由度,因此期望能够更充分地逼近原函数.对于一些在极小点附近很不对称,或曲率变化剧烈的函数,或在某个区域内变化大的函数,全部或部分用锥模型去逼近的效果可能好于用二次模型去逼近.  相似文献   

3.
In this paper, we present a dual algorithm for minimizing a convex quadratic function with two quadratic constraints. Such a minimization problem is a subproblem that appears in some trust region algorithms for general nonlinear programming. Some theoretical properties of the dual problem are given. Global convergence of the algorithm is proved and a local superlinear convergence result is presented. Numerical examples are also provided.  相似文献   

4.
In this paper, we propose a new nonmonotonic interior point backtracking strategy to modify the reduced projective affine scaling trust region algorithm for solving optimization subject to nonlinear equality and linear inequality constraints. The general full trust region subproblem for solving the nonlinear equality and linear inequality constrained optimization is decomposed to a pair of trust region subproblems in horizontal and vertical subspaces of linearize equality constraints and extended affine scaling equality constraints. The horizontal subproblem in the proposed algorithm is defined by minimizing a quadratic projective reduced Hessian function subject only to an ellipsoidal trust region constraint in a null subspace of the tangential space, while the vertical subproblem is also defined by the least squares subproblem subject only to an ellipsoidal trust region constraint. By introducing the Fletcher's penalty function as the merit function, trust region strategy with interior point backtracking technique will switch to strictly feasible interior point step generated by a component direction of the two trust region subproblems. The global convergence of the proposed algorithm while maintaining fast local convergence rate of the proposed algorithm are established under some reasonable conditions. A nonmonotonic criterion should bring about speeding up the convergence progress in some high nonlinear function conditioned cases.  相似文献   

5.
In this paper, we propose a trust region method for unconstrained optimization that can be regarded as a combination of conic model, nonmonotone and line search techniques. Unlike in traditional trust region methods, the subproblem of our algorithm is the conic minimization subproblem; moreover, our algorithm performs a nonmonotone line search to find the next iteration point when a trial step is not accepted, instead of resolving the subproblem. The global and superlinear convergence results for the algorithm are established under reasonable assumptions. Numerical results show that the new method is efficient for unconstrained optimization problems.  相似文献   

6.
In this paper, we propose a model-hybrid approach for nonlinear optimization that employs both trust region method and quasi-Newton method, which can avoid possibly resolve the trust region subproblem if the trial step is not acceptable. In particular, unlike the traditional trust region methods, the new approach does not use a single approximate model from beginning to the end, but instead employs quadratic model or conic model at every iteration adaptively. We show that the new algorithm preserves the strong convergence properties of trust region methods. Numerical results are also presented.  相似文献   

7.
In this paper, a new hybrid method is proposed for solving nonlinear complementarity problems (NCP) with P 0 function. In the new method, we combine a smoothing nonmonotone trust region method based on a conic model and line search techniques. We reformulate the NCP as a system of semismooth equations using the Fischer-Burmeister function. Using Kanzow’s smooth approximation function to construct the smooth operator, we propose a smoothing nonmonotone trust region algorithm of a conic model for solving the NCP with P 0 functions. This is different from the classical trust region methods, in that when a trial step is not accepted, the method does not resolve the trust region subproblem but generates an iterative point whose steplength is defined by a line search. We prove that every accumulation point of the sequence generated by the algorithm is a solution of the NCP. Under a nonsingularity condition, the superlinear convergence of the algorithm is established without a strict complementarity condition.  相似文献   

8.
Z. Akbari 《Optimization》2017,66(9):1519-1529
In this paper, we present a nonsmooth trust region method for solving linearly constrained optimization problems with a locally Lipschitz objective function. Using the approximation of the steepest descent direction, a quadratic approximation of the objective function is constructed. The null space technique is applied to handle the constraints of the quadratic subproblem. Next, the CG-Steihaug method is applied to solve the new approximation quadratic model with only the trust region constraint. Finally, the convergence of presented algorithm is proved. This algorithm is implemented in the MATLAB environment and the numerical results are reported.  相似文献   

9.
The trust region(TR) method for optimization is a class of effective methods.The conic model can be regarded as a generalized quadratic model and it possesses the good convergence properties of the quadratic model near the minimizer.The Barzilai and Borwein(BB) gradient method is also an effective method,it can be used for solving large scale optimization problems to avoid the expensive computation and storage of matrices.In addition,the BB stepsize is easy to determine without large computational efforts.In this paper,based on the conic trust region framework,we employ the generalized BB stepsize,and propose a new nonmonotone adaptive trust region method based on simple conic model for large scale unconstrained optimization.Unlike traditional conic model,the Hessian approximation is an scalar matrix based on the generalized BB stepsize,which resulting a simple conic model.By adding the nonmonotone technique and adaptive technique to the simple conic model,the new method needs less storage location and converges faster.The global convergence of the algorithm is established under certain conditions.Numerical results indicate that the new method is effective and attractive for large scale unconstrained optimization problems.  相似文献   

10.
A convergent decomposition algorithm for support vector machines   总被引:1,自引:0,他引:1  
In this work we consider nonlinear minimization problems with a single linear equality constraint and box constraints. In particular we are interested in solving problems where the number of variables is so huge that traditional optimization methods cannot be directly applied. Many interesting real world problems lead to the solution of large scale constrained problems with this structure. For example, the special subclass of problems with convex quadratic objective function plays a fundamental role in the training of Support Vector Machine, which is a technique for machine learning problems. For this particular subclass of convex quadratic problem, some convergent decomposition methods, based on the solution of a sequence of smaller subproblems, have been proposed. In this paper we define a new globally convergent decomposition algorithm that differs from the previous methods in the rule for the choice of the subproblem variables and in the presence of a proximal point modification in the objective function of the subproblems. In particular, the new rule for sequentially selecting the subproblems appears to be suited to tackle large scale problems, while the introduction of the proximal point term allows us to ensure the global convergence of the algorithm for the general case of nonconvex objective function. Furthermore, we report some preliminary numerical results on support vector classification problems with up to 100 thousands variables.  相似文献   

11.
本文对带线性等式约束的LC^1优化问题提出了一个新的ODE型信赖域算法,它在每一次迭代时,不必求解带信赖域界的子问题,仅解一线性方程组而求得试验步。从而可以降低计算的复杂性,提高计算效率,在一定的条件下,文中还证明了该算法是超线性收敛的。  相似文献   

12.
This paper studies an extended trust region subproblem (eTRS) in which the trust region intersects the unit ball with a single linear inequality constraint. We present an efficient algorithm to solve the problem using a diagonalization scheme that requires solving a simple convex minimization problem. Attainment of the global optimality conditions is discussed. Our preliminary numerical experiments on several randomly generated test problems show that, the new approach is much faster in finding the global optimal solution than the known semidefinite relaxation approach, especially when solving large scale problems.  相似文献   

13.
We describe a general scheme for solving nonconvex optimization problems, where in each iteration the nonconvex feasible set is approximated by an inner convex approximation. The latter is defined using an upper bound on the nonconvex constraint functions. Under appropriate conditions, a monotone convergence to a KKT point is established. The scheme is applied to truss topology design (TTD) problems, where the nonconvex constraints are associated with bounds on displacements and stresses. It is shown that the approximate convex problem solved at each inner iteration can be cast as a conic quadratic programming problem, hence large scale TTD problems can be efficiently solved by the proposed method.  相似文献   

14.
欧宜贵  侯定丕 《数学季刊》2003,18(2):140-145
In this paper, a new trust region algorithm for unconstrained LC1 optimization problems is given. Compare with those existing trust regiion methods, this algorithm has a different feature: it obtains a stepsize at each iteration not by soloving a quadratic subproblem with a trust region bound, but by solving a system of linear equations. Thus it reduces computational complexity and improves computation efficiency. It is proven that this algorithm is globally convergent and locally superlinear under some conditions.  相似文献   

15.
解新锥模型信赖域子问题的折线法   总被引:1,自引:0,他引:1  
本文以新锥模型信赖域子问题的最优性条件为理论基础,认真讨论了新子问题的锥函数性质,分析了此函数在梯度方向及与牛顿方向连线上的单调性.在此基础上本文提出了一个求解新锥模型信赖域子问题折线法,并证明了这一子算法保证解无约束优化问题信赖域法全局收敛性要满足的下降条件.本文获得的数值实验表明该算法是有效的.  相似文献   

16.
解线性约束优化问题的新锥模型信赖域法   总被引:1,自引:0,他引:1  
本文提出了一个解线性等式约束优化问题的新锥模型信赖域方法.论文采用零空间技术消除了新锥模型子问题中的线性等式约束,用折线法求解转换后的子问题,并给出了解线性等式约束优化问题的信赖域方法.论文提出并证明了该方法的全局收敛性,并给出了该方法解线性等式约束优化问题的数值实验.理论和数值实验结果表明新锥模型信赖域方法是有效的,这给出了用新锥模型进一步研究非线性优化的基础.  相似文献   

17.
We present a decomposition-approximation method for generating convex relaxations for nonconvex quadratically constrained quadratic programming (QCQP). We first develop a general conic program relaxation for QCQP based on a matrix decomposition scheme and polyhedral (piecewise linear) underestimation. By employing suitable matrix cones, we then show that the convex conic relaxation can be reduced to a semidefinite programming (SDP) problem. In particular, we investigate polyhedral underestimations for several classes of matrix cones, including the cones of rank-1 and rank-2 matrices, the cone generated by the coefficient matrices, the cone of positive semidefinite matrices and the cones induced by rank-2 semidefinite inequalities. We demonstrate that in general the new SDP relaxations can generate lower bounds at least as tight as the best known SDP relaxations for QCQP. Moreover, we give examples for which tighter lower bounds can be generated by the new SDP relaxations. We also report comparison results of different convex relaxation schemes for nonconvex QCQP with convex quadratic/linear constraints, nonconvex quadratic constraints and 0–1 constraints.  相似文献   

18.
一类非线性互补问题的信赖域算法   总被引:1,自引:0,他引:1  
欧宜贵 《数学季刊》2007,22(4):558-566
In this paper,an ODE-type trust region algorithm for solving a class of nonlinear complementarity problems is proposed.A feature of this algorithm is that only the solution of linear systems of equations is required at each iteration,thus avoiding the need for solving a quadratic subproblem with a trust region bound.Under some conditions,it is proven that this algorithm is globally and locally superlinear convergent.The limited numerical examples show its efficiency.  相似文献   

19.
We consider the problem of minimizing an indefinite quadratic objective function subject to twosided indefinite quadratic constraints. Under a suitable simultaneous diagonalization assumption (which trivially holds for trust region type problems), we prove that the original problem is equivalent to a convex minimization problem with simple linear constraints. We then consider a special problem of minimizing a concave quadratic function subject to finitely many convex quadratic constraints, which is also shown to be equivalent to a minimax convex problem. In both cases we derive the explicit nonlinear transformations which allow for recovering the optimal solution of the nonconvex problems via their equivalent convex counterparts. Special cases and applications are also discussed. We outline interior-point polynomial-time algorithms for the solution of the equivalent convex programs. This author's work was partially supported by GIF, the German-Israeli Foundation for Scientific Research and Development and by the Binational Science Foundation. This author's work was partially supported by National Science Foundation Grants DMS-9201297 and DMS-9401871.  相似文献   

20.
结合有效集和多维滤子技术的拟Newton信赖域算法(英文)   总被引:1,自引:0,他引:1  
针对界约束优化问题,提出一个修正的多维滤子信赖域算法.将滤子技术引入到拟Newton信赖域方法,在每步迭代,Cauchy点用于预测有效集,此时试探步借助于求解一个较小规模的信赖域子问题获得.在一定条件下,本文所提出的修正算法对于凸约束优化问题全局收敛.数值试验验证了新算法的实际运行结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号