首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We analyze the convergence rate of the alternating direction method of multipliers (ADMM) for minimizing the sum of two or more nonsmooth convex separable functions subject to linear constraints. Previous analysis of the ADMM typically assumes that the objective function is the sum of only two convex functions defined on two separable blocks of variables even though the algorithm works well in numerical experiments for three or more blocks. Moreover, there has been no rate of convergence analysis for the ADMM without strong convexity in the objective function. In this paper we establish the global R-linear convergence of the ADMM for minimizing the sum of any number of convex separable functions, assuming that a certain error bound condition holds true and the dual stepsize is sufficiently small. Such an error bound condition is satisfied for example when the feasible set is a compact polyhedron and the objective function consists of a smooth strictly convex function composed with a linear mapping, and a nonsmooth \(\ell _1\) regularizer. This result implies the linear convergence of the ADMM for contemporary applications such as LASSO without assuming strong convexity of the objective function.  相似文献   

2.
We consider the convex minimization problem with linear constraints and a block-separable objective function which is represented as the sum of three functions without coupled variables. To solve this model, it is empirically effective to extend straightforwardly the alternating direction method of multipliers (ADM for short). But, the convergence of this straightforward extension of ADM is still not proved theoretically. Based on ADM’s straightforward extension, this paper presents a new splitting method for the model under consideration, which is empirically competitive to the straightforward extension of ADM and meanwhile the global convergence can be proved under standard assumptions. At each iteration, the new method corrects the output of the straightforward extension of ADM by some slight correction computation to generate a new iterate. Thus, the implementation of the new method is almost as easy as that of ADM’s straightforward extension. We show the numerical efficiency of the new method by some applications in the areas of image processing and statistics.  相似文献   

3.
Recently, the alternating direction method of multipliers (ADMM) has found many efficient applications in various areas; and it has been shown that the convergence is not guaranteed when it is directly extended to the multiple-block case of separable convex minimization problems where there are m ≥ 3 functions without coupled variables in the objective. This fact has given great impetus to investigate various conditions on both the model and the algorithm’s parameter that can ensure the convergence of the direct extension of ADMM (abbreviated as “e-ADMM”). Despite some results under very strong conditions (e.g., at least (m ? 1) functions should be strongly convex) that are applicable to the generic case with a general m, some others concentrate on the special case of m = 3 under the relatively milder condition that only one function is assumed to be strongly convex. We focus on extending the convergence analysis from the case of m = 3 to the more general case of m ≥ 3. That is, we show the convergence of e-ADMM for the case of m ≥ 3 with the assumption of only (m ? 2) functions being strongly convex; and establish its convergence rates in different scenarios such as the worst-case convergence rates measured by iteration complexity and the globally linear convergence rate under stronger assumptions. Thus the convergence of e-ADMM for the general case of m ≥ 4 is proved; this result seems to be still unknown even though it is intuitive given the known result of the case of m = 3. Even for the special case of m = 3, our convergence results turn out to be more general than the existing results that are derived specifically for the case of m = 3.  相似文献   

4.
During the last decade, the state-of-the-art alternating direction method of multipliers (ADMM) has successfully been used to solve many two-block separable convex minimization problems arising from several applied areas such as signal/image processing and statistical and machine learning. It however remains an interesting problem of how to implement ADMM to three-block separable convex minimization problems as required by the situation where many objective functions in the above-mentioned areas are actually more conveniently decomposed to the sum of three convex functions, due also to the observation that the straightforward extension of ADMM from the two-block case to the three-block case is apparently not convergent. In this paper, we shall introduce a new algorithm that is called a partially isochronous splitting algorithm (PISA) in order to implement ADMM for the three-block separable model. The main idea of our algorithm is to incorporate only one proximal term into the last subproblem of the extended ADMM so that the resulting algorithm maximally inherits the promising properties of ADMM. A remarkable superiority over the extended ADMM is that we can simultaneously solve two of the subproblems, thereby taking advantages of the separable structure and parallel architectures. Theoretically, we will establish the global convergence of our algorithm under standard conditions, and also the O(1/t) rate of convergence in both ergodic and nonergodic senses, where t is the iteration counter. The computational competitiveness of our algorithm is shown by numerical experiments on an application to the well-tested robust principal component analysis model.  相似文献   

5.
The alternating direction method of multipliers(ADMM)is a benchmark for solving convex programming problems with separable objective functions and linear constraints.In the literature it has been illustrated as an application of the proximal point algorithm(PPA)to the dual problem of the model under consideration.This paper shows that ADMM can also be regarded as an application of PPA to the primal model with a customized choice of the proximal parameter.This primal illustration of ADMM is thus complemental to its dual illustration in the literature.This PPA revisit on ADMM from the primal perspective also enables us to recover the generalized ADMM proposed by Eckstein and Bertsekas easily.A worst-case O(1/t)convergence rate in ergodic sense is established for a slight extension of Eckstein and Bertsekas’s generalized ADMM.  相似文献   

6.
This paper addresses itself to the algorithm for minimizing the sum of a convex function and a product of two linear functions over a polytope. It is shown that this nonconvex minimization problem can be solved by solving a sequence of convex programming problems. The basic idea of this algorithm is to embed the original problem into a problem in higher dimension and apply a parametric programming (path following) approach. Also it is shown that the same idea can be applied to a generalized linear fractional programming problem whose objective function is the sum of a convex function and a linear fractional function.  相似文献   

7.
We consider applying the Douglas–Rachford splitting method (DRSM) to the convex minimization problem with linear constraints and a separable objective function. The dual application of DRSM has been well studied in the literature, resulting in the well known alternating direction method of multipliers (ADMM). In this paper, we show that the primal application of DRSM in combination with an appropriate decomposition can yield an efficient structure-exploiting algorithm for the model under consideration, whose subproblems could be easier than those of ADMM. Both the exact and inexact versions of this customized DRSM are studied; and their numerical efficiency is demonstrated by some preliminary numerical results.  相似文献   

8.
We consider the linearly constrained separable convex minimization problem, whose objective function consists of the sum of \(m\) individual convex functions in the absence of any coupling variables. While augmented Lagrangian-based decomposition methods have been well developed in the literature for solving such problems, a noteworthy requirement of these methods is that an additional correction step is a must to guarantee their convergence. This note shows that a straightforward Jacobian decomposition of the augmented Lagrangian method is globally convergent if the involved functions are further assumed to be strongly convex.  相似文献   

9.
The alternating direction method of multipliers(ADMM)is a widely used method for solving many convex minimization models arising in signal and image processing.In this paper,we propose an inertial ADMM for solving a two-block separable convex minimization problem with linear equality constraints.This algorithm is obtained by making use of the inertial Douglas-Rachford splitting algorithm to the corresponding dual of the primal problem.We study the convergence analysis of the proposed algorithm in infinite-dimensional Hilbert spaces.Furthermore,we apply the proposed algorithm on the robust principal component analysis problem and also compare it with other state-of-the-art algorithms.Numerical results demonstrate the advantage of the proposed algorithm.  相似文献   

10.
高雷阜  潘京乐  魏帅 《数学杂志》2016,36(2):365-374
本文研究了三个可分离算子不含交叉变量的线性约束凸优化问题.利用定制的邻近点算法,对其变分不等式子问题进行线性化处理,并增加一邻近点项,使其子问题成为易于运算的单调线性变分不等式,得到了线性化定制的邻近点算法,并证明了全局收敛性,推广了文献中的研究结果.  相似文献   

11.
Recently, optimization algorithms for solving a minimization problem whose objective function is a sum of two convex functions have been widely investigated in the field of image processing. In particular, the scenario when a non-differentiable convex function such as the total variation (TV) norm is included in the objective function has received considerable interests since many variational models encountered in image processing have this nature. In this paper, we propose a fast fixed point algorithm based on the adapted metric method, and apply it in the field of TV-based image deblurring. The novel method is derived from the idea of establishing a general fixed point algorithm framework based on an adequate quadratic approximation of one convex function in the objective function, in a way reminiscent of Quasi-Newton methods. Utilizing the non-expansion property of the proximity operator we further investigate the global convergence of the proposed algorithm. Numerical experiments on image deblurring problem demonstrate that the proposed algorithm is very competitive with the current state-of-the-art algorithms in terms of computational efficiency.  相似文献   

12.
In this paper, we consider the convergence of the generalized alternating direction method of multipliers(GADMM) for solving linearly constrained nonconvex minimization model whose objective contains coupled functions. Under the assumption that the augmented Lagrangian function satisfies the Kurdyka-Lojasiewicz inequality, we prove that the sequence generated by the GADMM converges to a critical point of the augmented Lagrangian function when the penalty parameter in the augmented Lagrangian function is sufficiently large. Moreover, we also present some sufficient conditions guaranteeing the sublinear and linear rate of convergence of the algorithm.  相似文献   

13.
In this paper, we develop a novel alternating linearization method for solving convex minimization whose objective function is the sum of two separable functions. The motivation of the paper is to extend the recent work Goldfarb et al.(2013) to cope with more generic convex minimization. For the proposed method,both the separable objective functions and the auxiliary penalty terms are linearized. Provided that the separable objective functions belong to C1,1(Rn), we prove the O(1/?) arithmetical complexity of the new method. Some preliminary numerical simulations involving image processing and compressive sensing are conducted.  相似文献   

14.
We consider the linearly constrained separable convex programming, whose objective function is separable into m individual convex functions without coupled variables. The alternating direction method of multipliers has been well studied in the literature for the special case m=2, while it remains open whether its convergence can be extended to the general case m≥3. This note shows the global convergence of this extension when the involved functions are further assumed to be strongly convex.  相似文献   

15.
A customized Douglas-Rachford splitting method (DRSM) was recently proposed to solve two-block separable convex optimization problems with linear constraints and simple abstract constraints. The algorithm has advantage over the well-known alternating direction method of multipliers (ADMM), the dual application of DRSM to the two-block convex minimization problem, in the sense that the subproblems can have larger opportunity of possessing closed-form solutions since they are unconstrained. In this paper, we further study along this way by considering the primal application of DRSM for the general case m≥3, i.e., we consider the multi-block separable convex minimization problem with linear constraints where the objective function is separable into m individual convex functions without coupled variables. The resulting method fully exploits the separable structure and enjoys decoupled subproblems which can be solved simultaneously. Both the exact and inexact versions of the new method are presented in a unified framework. Under mild conditions, we manage to prove the global convergence of the algorithm. Preliminary numerical experiments for extracting the background from corrupted surveillance video verify the encouraging efficiency of the new algorithm.  相似文献   

16.
We examine the complexity of two minimum spanning tree problems with rational objective functions. We show that the Minimum Ratio Spanning Tree problem is NP-hard when the denominator is unrestricted in sign, thereby sharpening a previous complexity result. We then consider an extension of this problem where the objective function is the sum of two linear ratios whose numerators and denominators are strictly positive. This problem is shown to be NP-hard as well. We conclude with some results characterizing sufficient conditions for a globally optimal solution.  相似文献   

17.
We introduce a penalty term-based splitting algorithm with inertial effects designed for solving monotone inclusion problems involving the sum of maximally monotone operators and the convex normal cone to the (nonempty) set of zeros of a monotone and Lipschitz continuous operator. We show weak ergodic convergence of the generated sequence of iterates to a solution of the monotone inclusion problem, provided a condition expressed via the Fitzpatrick function of the operator describing the underlying set of the normal cone is verified. Under strong monotonicity assumptions we can even show strong nonergodic convergence of the iterates. This approach constitutes the starting point for investigating from a similar perspective monotone inclusion problems involving linear compositions of parallel-sum operators and, further, for the minimization of a complexly structured convex objective function subject to the set of minima of another convex and differentiable function.  相似文献   

18.
In this paper, we consider the minimization of a class of nonconvex composite functions with difference of convex structure under linear constraints. While this kind of problems in theory can be solved by the celebrated alternating direction method of multipliers (ADMM), a direct application of ADMM often leads to difficult nonconvex subproblems. To address this issue, we propose to convexify the subproblems through a linearization technique as done in the difference of convex functions algorithm (DCA). By assuming the Kurdyka-?ojasiewicz property, we prove that the resulting algorithm sequentially converges to a critical point. It turns out that in the applications of signal and image processing such as compressed sensing and image denoising, the proposed algorithm usually enjoys closed-form solutions of the subproblems and thus can be very efficient. We provide numerical experiments to demonstrate the effectiveness of our algorithm.  相似文献   

19.
We present a primal-dual row-action method for the minimization of a convex function subject to general convex constraints. Constraints are used one at a time, no changes are made in the constraint functions and their Jacobian matrix (thus, the row-action nature of the algorithm), and at each iteration a subproblem is solved consisting of minimization of the objective function subject to one or two linear equations. The algorithm generates two sequences: one of them, called primal, converges to the solution of the problem; the other one, called dual, approximates a vector of optimal KKT multipliers for the problem. We prove convergence of the primal sequence for general convex constraints. In the case of linear constraints, we prove that the primal sequence converges at least linearly and obtain as a consequence the convergence of the dual sequence.The research of the first author was partially supported by CNPq Grant No. 301280/86.  相似文献   

20.
A method for approximate solution of minimization problems for multivariable convex functions with convex constraints is proposed. The main idea consists in approximation of the objective function and constraints by piecewise linear functions and subsequent reduction of the initial convex programming problem to a problem of linear programming. We present algorithms constructing approximating polygons for some classes of single variable convex functions. The many-dimensional problem is reduced to a one-dimensional one by an inductive procedure. The efficiency of the method is illustrated by numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号