首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We consider applying the Douglas–Rachford splitting method (DRSM) to the convex minimization problem with linear constraints and a separable objective function. The dual application of DRSM has been well studied in the literature, resulting in the well known alternating direction method of multipliers (ADMM). In this paper, we show that the primal application of DRSM in combination with an appropriate decomposition can yield an efficient structure-exploiting algorithm for the model under consideration, whose subproblems could be easier than those of ADMM. Both the exact and inexact versions of this customized DRSM are studied; and their numerical efficiency is demonstrated by some preliminary numerical results.  相似文献   

2.
The proximal alternating direction method of multipliers is a popular and useful method for linearly constrained, separable convex problems, especially for the linearized case. In the literature, convergence of the proximal alternating direction method has been established under the assumption that the proximal regularization matrix is positive semi-definite. Recently, it was shown that the regularizing proximal term in the proximal alternating direction method of multipliers does not necessarily have to be positive semi-definite, without any additional assumptions. However, it remains unknown as to whether the indefinite setting is valid for the proximal version of the symmetric alternating direction method of multipliers. In this paper, we confirm that the symmetric alternating direction method of multipliers can also be regularized with an indefinite proximal term. We theoretically prove the global convergence of the indefinite method and establish its worst-case convergence rate in an ergodic sense. In addition, the generalized alternating direction method of multipliers proposed by Eckstein and Bertsekas is a special case in our discussion. Finally, we demonstrate the performance improvements achieved when using the indefinite proximal term through experimental results.  相似文献   

3.
This paper focuses on some customized applications of the proximal point algorithm (PPA) to two classes of problems: the convex minimization problem with linear constraints and a generic or separable objective function, and a saddle-point problem. We treat these two classes of problems uniformly by a mixed variational inequality, and show how the application of PPA with customized metric proximal parameters can yield favorable algorithms which are able to make use of the models’ structures effectively. Our customized PPA revisit turns out to unify some algorithms including some existing ones in the literature and some new ones to be proposed. From the PPA perspective, we establish the global convergence and a worst-case O(1/t) convergence rate for this series of algorithms in a unified way.  相似文献   

4.
In this paper, we have considered a nonsmooth multiobjective optimization problem where the objective and constraint functions involved are directionally differentiable. A new class of generalized functions (d???ρ???η???θ)-type I univex is introduced which generalizes many earlier classes cited in literature. Based upon these generalized functions, we have derived weak, strong, converse and strict converse duality theorems for mixed type multiobjective dual program in order to relate the efficient and weak efficient solutions of primal and dual problem.  相似文献   

5.
The convergence of primal and dual central paths associated to entropy and exponential functions, respectively, for semidefinite programming problem are studied in this paper. It is proved that the primal path converges to the analytic center of the primal optimal set with respect to the entropy function, the dual path converges to a point in the dual optimal set and the primal-dual path associated to this paths converges to a point in the primal-dual optimal set. As an application, the generalized proximal point method with the Kullback-Leibler distance applied to semidefinite programming problems is considered. The convergence of the primal proximal sequence to the analytic center of the primal optimal set with respect to the entropy function is established and the convergence of a particular weighted dual proximal sequence to a point in the dual optimal set is obtained.  相似文献   

6.
7.
During the last decade, the state-of-the-art alternating direction method of multipliers (ADMM) has successfully been used to solve many two-block separable convex minimization problems arising from several applied areas such as signal/image processing and statistical and machine learning. It however remains an interesting problem of how to implement ADMM to three-block separable convex minimization problems as required by the situation where many objective functions in the above-mentioned areas are actually more conveniently decomposed to the sum of three convex functions, due also to the observation that the straightforward extension of ADMM from the two-block case to the three-block case is apparently not convergent. In this paper, we shall introduce a new algorithm that is called a partially isochronous splitting algorithm (PISA) in order to implement ADMM for the three-block separable model. The main idea of our algorithm is to incorporate only one proximal term into the last subproblem of the extended ADMM so that the resulting algorithm maximally inherits the promising properties of ADMM. A remarkable superiority over the extended ADMM is that we can simultaneously solve two of the subproblems, thereby taking advantages of the separable structure and parallel architectures. Theoretically, we will establish the global convergence of our algorithm under standard conditions, and also the O(1/t) rate of convergence in both ergodic and nonergodic senses, where t is the iteration counter. The computational competitiveness of our algorithm is shown by numerical experiments on an application to the well-tested robust principal component analysis model.  相似文献   

8.
9.
We consider a primal optimization problem in a reflexive Banach space and a duality scheme via generalized augmented Lagrangians. For solving the dual problem (in a Hilbert space), we introduce and analyze a new parameterized Inexact Modified Subgradient (IMSg) algorithm. The IMSg generates a primal-dual sequence, and we focus on two simple new choices of the stepsize. We prove that every weak accumulation point of the primal sequence is a primal solution and the dual sequence converges weakly to a dual solution, as long as the dual optimal set is nonempty. Moreover, we establish primal convergence even when the dual optimal set is empty. Our second choice of the stepsize gives rise to a variant of IMSg which has finite termination.  相似文献   

10.
The alternating direction method of multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a generalized symmetric ADMM (GS-ADMM), which updates the Lagrange multiplier twice with suitable stepsizes, to solve the multi-block separable convex programming. This GS-ADMM partitions the data into two group variables so that one group consists of p block variables while the other has q block variables, where \(p \ge 1\) and \(q \ge 1\) are two integers. The two grouped variables are updated in a Gauss–Seidel scheme, while the variables within each group are updated in a Jacobi scheme, which would make it very attractive for a big data setting. By adding proper proximal terms to the subproblems, we specify the domain of the stepsizes to guarantee that GS-ADMM is globally convergent with a worst-case \({\mathcal {O}}(1/t)\) ergodic convergence rate. It turns out that our convergence domain of the stepsizes is significantly larger than other convergence domains in the literature. Hence, the GS-ADMM is more flexible and attractive on choosing and using larger stepsizes of the dual variable. Besides, two special cases of GS-ADMM, which allows using zero penalty terms, are also discussed and analyzed. Compared with several state-of-the-art methods, preliminary numerical experiments on solving a sparse matrix minimization problem in the statistical learning show that our proposed method is effective and promising.  相似文献   

11.
In this work, we consider a new class of multitime multiobjective variational problems of minimizing a vector of functionals of curvilinear integral type. Based on the normal efficiency conditions for multitime multiobjective variational problems, we study duals of Mond-Weir type, generalized Mond-Weir-Zalmai type and under some assumptions of (??, b)-quasiinvexity, duality theorems are stated. We give weak duality theorems, proving that the value of the objective function of the primal cannot exceed the value of the dual. Moreover, we study the connection between values of the objective functions of the primal and dual programs, in direct and converse duality theorems. While the results in §1 and §2 are introductory in nature, to the best of our knowledge, the results in §3 are new and they have not been reported in literature.  相似文献   

12.
We introduce the notion of predicted decrease approximation (PDA) for constrained convex optimization, a flexible framework which includes as special cases known algorithms such as generalized conditional gradient, proximal gradient, greedy coordinate descent for separable constraints and working set methods for linear equality constraints with bounds. The new scheme allows the development of a unified convergence analysis for these methods. We further consider a partially strongly convex nonsmooth model and show that dual application of PDA-based methods yields new sublinear convergence rate estimates in terms of both primal and dual objectives. As an example of an application, we provide an explicit working set selection rule for SMO-type methods for training the support vector machine with an improved primal convergence analysis.  相似文献   

13.
We introduce an entropy-like proximal algorithm for the problem of minimizing a closed proper convex function subject to symmetric cone constraints. The algorithm is based on a distance-like function that is an extension of the Kullback-Leiber relative entropy to the setting of symmetric cones. Like the proximal algorithms for convex programming with nonnegative orthant cone constraints, we show that, under some mild assumptions, the sequence generated by the proposed algorithm is bounded and every accumulation point is a solution of the considered problem. In addition, we also present a dual application of the proposed algorithm to the symmetric cone linear program, leading to a multiplier method which is shown to possess similar properties as the exponential multiplier method (Tseng and Bertsekas in Math. Program. 60:1–19, 1993) holds.  相似文献   

14.
The alternating direction method of multipliers(ADMM)is a widely used method for solving many convex minimization models arising in signal and image processing.In this paper,we propose an inertial ADMM for solving a two-block separable convex minimization problem with linear equality constraints.This algorithm is obtained by making use of the inertial Douglas-Rachford splitting algorithm to the corresponding dual of the primal problem.We study the convergence analysis of the proposed algorithm in infinite-dimensional Hilbert spaces.Furthermore,we apply the proposed algorithm on the robust principal component analysis problem and also compare it with other state-of-the-art algorithms.Numerical results demonstrate the advantage of the proposed algorithm.  相似文献   

15.
Lagrangian relaxation is useful to bound the optimal value of a given optimization problem, and also to obtain relaxed solutions. To obtain primal solutions, it is conceivable to use a convexification procedure suggested by D.P. Bertsekas in 1979, based on the proximal algorithm in the primal space.The present paper studies the theory assessing the approach in the framework of combinatorial optimization. Our results indicate that very little can be expected in theory, even though fairly good practical results have been obtained for the unit-commitment problem.  相似文献   

16.
A customized Douglas-Rachford splitting method (DRSM) was recently proposed to solve two-block separable convex optimization problems with linear constraints and simple abstract constraints. The algorithm has advantage over the well-known alternating direction method of multipliers (ADMM), the dual application of DRSM to the two-block convex minimization problem, in the sense that the subproblems can have larger opportunity of possessing closed-form solutions since they are unconstrained. In this paper, we further study along this way by considering the primal application of DRSM for the general case m≥3, i.e., we consider the multi-block separable convex minimization problem with linear constraints where the objective function is separable into m individual convex functions without coupled variables. The resulting method fully exploits the separable structure and enjoys decoupled subproblems which can be solved simultaneously. Both the exact and inexact versions of the new method are presented in a unified framework. Under mild conditions, we manage to prove the global convergence of the algorithm. Preliminary numerical experiments for extracting the background from corrupted surveillance video verify the encouraging efficiency of the new algorithm.  相似文献   

17.
This paper is devoted to the numerical resolution of unit-commitment problems, with emphasis on the French model optimizing the daily production of electricity. The solution process has two phases. First a Lagrangian relaxation solves the dual to find a lower bound; it also gives a primal relaxed solution. We then propose to use the latter in the second phase, for a heuristic resolution based on a primal proximal algorithm. This second step comes as an alternative to an earlier approach, based on augmented Lagrangian (i.e. a dual proximal algorithm). We illustrate the method with some real-life numerical results. A companion paper is devoted to a theoretical study of the heuristic in the second phase.  相似文献   

18.
We derive a new approximate version of the alternating direction method of multipliers (ADMM) which uses a relative error criterion. The new version is somewhat restrictive and allows only one of the two subproblems to be minimized approximately, but nevertheless covers commonly encountered special cases. The derivation exploits the long-established relationship between the ADMM and both the proximal point algorithm (PPA) and Douglas–Rachford (DR) splitting for maximal monotone operators, along with a relative-error of the PPA due to Solodov and Svaiter. In the course of analysis, we also derive a version of DR splitting in which one operator may be evaluated approximately using a relative error criterion. We computationally evaluate our method on several classes of test problems and find that it significantly outperforms several alternatives on one problem class.  相似文献   

19.
In this paper, the notion of duality and a generalized methodology to identify the dual for an Erlang distribution-based truncated steady-state queueing process is suggested. This procedure provides insight into truncated queueing processes. At first glance, the relationship between the primal problem and the dual problem may not be intuitive. Several such relationships are identified. For example, the dual of the M/Es/C/C queueing process is shown to be the M/M/1 machine interference problem with C machines and the solution to one of these provides the solution to the other. An example is presented.  相似文献   

20.
A?contact representation by triangles of a graph is a set of triangles in the plane such that two triangles intersect on at most one point, each triangle represents a vertex of the graph and two triangles intersects if and only if their corresponding vertices are adjacent. De Fraysseix, Ossona de Mendez and Rosenstiehl proved that every planar graph admits a contact representation by triangles. We strengthen this in terms of a simultaneous contact representation by triangles of a planar map and of its dual. A?primal?Cdual contact representation by triangles of a planar map is a contact representation by triangles of the primal and a contact representation by triangles of the dual such that for every edge uv, bordering faces f and g, the intersection between the triangles corresponding to u and v is the same point as the intersection between the triangles corresponding to f and g. We prove that every 3-connected planar map admits a primal?Cdual contact representation by triangles. Moreover, the interiors of the triangles form a tiling of the triangle corresponding to the outer face and each contact point is a corner of exactly three triangles. Then we show that these representations are in one-to-one correspondence with generalized Schnyder woods defined by Felsner for 3-connected planar maps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号