首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, a three-species predator-prey system with two delays is investigated. By choosing the sum τ of two delays as a bifurcation parameter, we first show that Hopf bifurcation at the positive equilibrium of the system can occur as τ crosses some critical values. Second, we obtain the formulae determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions by using the normal form theory and center manifold theorem. Finally, numerical simulations supporting our theoretical results are also included.  相似文献   

2.
In this paper, the Leslie-Gower predator-prey system with two delays is investigated. By choosing the delay as a bifurcation parameter, we show that Hopf bifurcations can occur as the delay crosses some critical values. In addition, special attention is paid to the global continuation of local Hopf bifurcations. Using a global Hopf bifurcation theorem for functional differential equations, we show the global existence of periodic solutions.  相似文献   

3.
In this paper, a competitive Lotka-Volterra system with three delays is investigated. By choosing the sum τ of three delays as a bifurcation parameter, we show that in the above system, Hopf bifurcation at the positive equilibrium can occur as τ crosses some critical values. And we obtain the formulae determining direction of Hopf bifurcation and stability of the bifurcating periodic solutions by using the normal form theory and center manifold theorem. Finally, numerical simulations supporting our theoretical results are also included.  相似文献   

4.
In this paper, we consider a regulated logistic growth model. We first consider the linear stability and the existence of a Hopf bifurcation. We show that Hopf bifurcations occur as the delay τ passes through critical values. Then, using the normal form theory and center manifold reduction, we derive the explicit algorithm determining the direction of Hopf bifurcations and the stability of the bifurcating periodic solutions. Finally, numerical simulation results are given to support the theoretical predictions.  相似文献   

5.
In this paper, a retarded competition and cooperation model of two enterprises is investigated. We first prove that the existence of the unique positive equilibrium for the mentioned model. By choosing the delay τ as a bifurcation parameter, we show that Hopf bifurcation at the positive equilibrium of the system can occur as τ crosses some critical values. Further, using the normal form theory and center manifold theorem, we derive the explicit algorithm determining the direction of Hopf bifurcations and the stability of the bifurcating periodic solutions. Finally, some numerical simulations supporting our theoretical results and the economic meaning of model are also included.  相似文献   

6.
We consider a delayed predator-prey system. We first consider the existence of local Hopf bifurcations, and then derive explicit formulas which enable us to determine the stability and the direction of periodic solutions bifurcating from Hopf bifurcations, using the normal form theory and center manifold argument. Special attention is paid to the global existence of periodic solutions bifurcating from Hopf bifurcations. By using a global Hopf bifurcation result due to Wu [Trans. Amer. Math. Soc. 350 (1998) 4799], we show that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of delay. Finally, several numerical simulations supporting the theoretical analysis are also given.  相似文献   

7.
This paper studies various Hopf bifurcations in the two-dimensional plane Poiseuille problem. For several values of the wavenumber α, we obtain the branch of periodic flows which are born at the Hopf bifurcation of the laminar flow. It is known that, taking α ≈ 1, the branch of periodic solutions has several Hopf bifurcations to quasi-periodic orbits. For the first bifurcation, calculations from other authors seem to indicate that the bifurcating quasi-periodic flows are stable and subcritical with respect to the Reynolds number, Re. By improving the precision of previous works we find that the bifurcating flows are unstable and supercritical with respect to Re. We have also analysed the second Hopf bifurcation of periodic orbits for several α, to find again quasi-periodic solutions with increasing Re. In this case the bifurcated solutions are stable to superharmonic disturbances for Re up to another new Hopf bifurcation to a family of stable 3-tori. The proposed numerical scheme is based on a full numerical integration of the Navier-Stokes equations, together with a division by 3 of their total dimension, and the use of a pseudo-Newton method on suitable Poincaré sections. The most intensive part of the computations has been performed in parallel. We believe that this methodology can also be applied to similar problems.  相似文献   

8.
We investigate the behaviour of a neural network model consisting of two coupled oscillators with delays and inhibitory-to-inhibitory connections. We consider the absolute synchronization and show that the connection topology of the network plays a fundamental role in classifying the rich dynamics and bifurcation phenomena. Regarding eigenvalues of the connection matrix as bifurcation parameters, we obtain codimension one bifurcations (including fold bifurcation and Hopf bifurcation) and codimension two bifurcation (including fold-Hopf bifurcations and Hopf–Hopf bifurcations). Based on the normal form theory and center manifold reduction, we obtain detailed information about the bifurcation direction and stability of various bifurcated equilibria as well as periodic solutions with some kinds of spatio-temporal patterns. Numerical simulation is also given to support the obtained results.  相似文献   

9.
In this paper, an eco-epidemiological model with a stage structure is considered. The asymptotical stability of the five equilibria, the existence of stability switches about positive equilibrium, is investigated. It is found that Hopf bifurcation occurs when the delay τ passes though a critical value. Some explicit formulae determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Some numerical simulations for justifying the theoretical analysis are also provided. Finally, biological explanations and main conclusions are given.  相似文献   

10.
In this paper we give a detailed Hopf bifurcation analysis of a ratio-dependent predator–prey system involving two different discrete delays. By analyzing the characteristic equation associated with the model, its linear stability is investigated. Choosing delay terms as bifurcation parameters the existence of Hopf bifurcations is demonstrated. Stability of the bifurcating periodic solutions is determined by using the center manifold theorem and the normal form theory introduced by Hassard et al. Furthermore, some of the bifurcation properties including direction, stability and period are given. Finally, theoretical results are supported by some numerical simulations.  相似文献   

11.
The purpose of this paper is to study Hopf bifurcations in a delayed Lotka–Volterra system with dihedral symmetry. By treating the response delay as bifurcation parameter and employing equivariant degree method, we obtain the existence of multiple branches of nonconstant periodic solutions through a local Hopf bifurcation around an equilibrium. We find that competing coefficients and the response delay in the system can affect the spatio-temporal patterns of bifurcating periodic solutions. According to their symmetric properties, a topological classification is given for these periodic solutions. Furthermore, an estimation is presented on minimal number of bifurcating branches. These theoretical results are helpful to better understand the complex dynamics induced by response delays and symmetries in Lotka–Volterra systems.  相似文献   

12.
The dynamics of a class of abstract delay differential equations are investigated. We prove that a sequence of Hopf bifurcations occur at the origin equilibrium as the delay increases. By using the theory of normal form and centre manifold, the direction of Hopf bifurcations and the stability of the bifurcating periodic solutions is derived. Then, the existence of the global Hopf bifurcation of the system is discussed by applying the global Hopf bifurcation theorem of general functional differential equation.  相似文献   

13.
A kind of three-species system with Holling II functional response and two delays is introduced. Its local stability and the existence of Hopf bifurcation are demonstrated by analyzing the associated characteristic equation. By using the normal form method and center manifold theorem, explicit formulas to determine the direction of the Hopf bifurcation and the stability of bifurcating periodic solution are also obtained. In addition, the global existence results of periodic solutions bifurcating from Hopf bifurcations are established by using a global Hopf bifurcation result. Numerical simulation results are also given to support our theoretical predictions.  相似文献   

14.
We consider a reaction-diffusion system with general time-delayed growth rate and kernel functions. The existence and stability of the positive spatially nonhomogeneous steady-state solution are obtained. Moreover, taking minimal time delay τ as the bifurcation parameter, Hopf bifurcation near the steady-state solution is proved to occur at a critical value τ=τ0. Especially, the Hopf bifurcation is forward and the bifurcated periodic solutions are stable on the center manifold. The general results are applied to competitive and cooperative systems with weak or strong kernel function respectively.  相似文献   

15.
The generic isolated bifurcations for one-parameter families of smooth planar vector fields {Xμ} which give rise to periodic orbits are: the Andronov-Hopf bifurcation, the bifurcation from a semi-stable periodic orbit, the saddle-node loop bifurcation and the saddle loop bifurcation. In this paper we obtain the dominant term of the asymptotic behaviour of the period of the limit cycles appearing in each of these bifurcations in terms of μ when we are near the bifurcation. The method used to study the first two bifurcations is also used to solve the same problem in another two situations: a generalization of the Andronov-Hopf bifurcation to vector fields starting with a special monodromic jet; and the Hopf bifurcation at infinity for families of polynomial vector fields.  相似文献   

16.
张志平 《计算数学》2008,30(2):213-224
本文讨论了具离散和分布时滞的偏害系统.以时滞作为分歧参数,通过分析原系统在正平衡点处线性化系统的特征方程,获得了正平衡点渐近稳定以及在它周围分歧出周期解的条件.另外,通过使用规范形和中心流形定理,我们获得了Hopf分歧的方向和分歧周期解稳定性的显式算法.最后,数值模拟支持了我们的理论分析.  相似文献   

17.
In this paper, we consider a three‐dimensional viral model with delay. We first investigate the linear stability and the existence of a Hopf bifurcation. It is shown that Hopf bifurcations occur as the delay τ passes through a sequence of critical values. Then, using the normal form theory and center manifold reduction, we derive the explicit formulaes that determine the stability, the direction, and the period of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the validity of the main results. Finally, some brief conclusions are given. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents an investigation of stability and Hopf bifurcation of the synaptically coupled nonidentical FHN model with two time delays. We first consider the existence of local Hopf bifurcations, by regarding the sum of the two delays as a parameter, then derive explicit formulas for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions, using the normal form method and center manifold theory. Finally, numerical simulations are carried out for supporting the theoretical analysis.  相似文献   

19.
In this paper, we concentrate on the spatiotemporal patterns of a delayed reaction‐diffusion Holling‐Tanner model with Neumann boundary conditions. In particular, the time delay that is incorporated in the negative feedback of the predator density is considered as one of the principal factors to affect the dynamic behavior. Firstly, a global Turing bifurcation theorem for τ = 0 and a local Turing bifurcation theorem for τ > 0 are given. Then, further considering the degenerated situation, we derive the existence of Bogdanov‐Takens bifurcation and Turing‐Hopf bifurcation. The normal form method is used to study the explicit dynamics near the Turing‐Hopf singularity. It is shown that a pair of stable nonconstant steady states (stripe patterns) and a pair of stable spatially inhomogeneous periodic solutions (spot patterns) could be bifurcated from a positive equilibrium. Moreover, the Turing‐Turing‐Hopf–type spatiotemporal patterns, that is, a subharmonic phenomenon with two spatial wave numbers and one temporal frequency, are also found and explained theoretically. Our results imply that the interaction of Turing and Hopf instabilities can be considered as the simplest mechanism for the appearance of complex spatiotemporal dynamics.  相似文献   

20.
This paper is concerned with a predator–prey system with Holling II functional response and hunting delay and gestation. By regarding the sum of delays as the bifurcation parameter, the local stability of the positive equilibrium and the existence of Hopf bifurcation are investigated. We obtained explicit formulas to determine the properties of Hopf bifurcation by using the normal form method and center manifold theorem. Special attention is paid to the global continuation of local Hopf bifurcation. Using a global Hopf bifurcation result of Wu [Wu JH. Symmetric functional differential equations and neural networks with memory, Trans Amer Math Soc 1998;350:4799–4838] for functional differential equations, we may show the global existence of the periodic solutions. Finally, several numerical simulations illustrating the theoretical analysis are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号