首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, a competitive Lotka-Volterra system with three delays is investigated. By choosing the sum τ of three delays as a bifurcation parameter, we show that in the above system, Hopf bifurcation at the positive equilibrium can occur as τ crosses some critical values. And we obtain the formulae determining direction of Hopf bifurcation and stability of the bifurcating periodic solutions by using the normal form theory and center manifold theorem. Finally, numerical simulations supporting our theoretical results are also included.  相似文献   

2.
Bifurcations for a predator-prey system with two delays   总被引:2,自引:0,他引:2  
In this paper, a predator-prey system with two delays is investigated. By choosing the sum τ of two delays as a bifurcation parameter, we show that Hopf bifurcations can occur as τ crosses some critical values. By deriving the equation describing the flow on the center manifold, we can determine the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions. In addition, special attention is paid to the global continuation of local Hopf bifurcations. Using a global Hopf bifurcation result of [J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc. 350 (1998) 4799-4838], we may show the global existence of periodic solutions.  相似文献   

3.
We consider a harmonic oscillator with delays. Linear stability is investigated by analyzing the associated characteristic transcendental equation. The bifurcation analysis of the equation shows that Hopf bifurcation can occur as the delay τ (taken as a parameter) crosses some critical values. The direction and stability of the Hopf bifurcation are considered by using the normal form theory due to Faria and Magalhães. An example is given to explain the results. Numerical simulations support our results.  相似文献   

4.
We consider a delayed predator-prey system with Beddington-DeAngelis functional response. The stability of the interior equilibrium will be studied by analyzing the associated characteristic transcendental equation. By choosing the delay τ as a bifurcation parameter, we show that Hopf bifurcation can occur as the delay τ crosses some critical values. The direction and stability of the Hopf bifurcation are investigated by following the procedure of deriving normal form given by Faria and Magalhães. An example is given and numerical simulations are performed to illustrate the obtained results.  相似文献   

5.
We consider a reaction-diffusion system with general time-delayed growth rate and kernel functions. The existence and stability of the positive spatially nonhomogeneous steady-state solution are obtained. Moreover, taking minimal time delay τ as the bifurcation parameter, Hopf bifurcation near the steady-state solution is proved to occur at a critical value τ=τ0. Especially, the Hopf bifurcation is forward and the bifurcated periodic solutions are stable on the center manifold. The general results are applied to competitive and cooperative systems with weak or strong kernel function respectively.  相似文献   

6.
A class of three level food chain system is studied. With the theory of delay equations and Hopf bifurcation, the conditions of the positive equilibrium undergoing Hopf bifurcation is given regarding τ as the parameter. The stability and direction of Hopf bifurcation are determined by applying the normal form theory and the center manifold argument, and numerical simulations are performed to illustrate the analytical results.  相似文献   

7.
8.
In this paper, a retarded competition and cooperation model of two enterprises is investigated. We first prove that the existence of the unique positive equilibrium for the mentioned model. By choosing the delay τ as a bifurcation parameter, we show that Hopf bifurcation at the positive equilibrium of the system can occur as τ crosses some critical values. Further, using the normal form theory and center manifold theorem, we derive the explicit algorithm determining the direction of Hopf bifurcations and the stability of the bifurcating periodic solutions. Finally, some numerical simulations supporting our theoretical results and the economic meaning of model are also included.  相似文献   

9.
In this paper, we consider a regulated logistic growth model. We first consider the linear stability and the existence of a Hopf bifurcation. We show that Hopf bifurcations occur as the delay τ passes through critical values. Then, using the normal form theory and center manifold reduction, we derive the explicit algorithm determining the direction of Hopf bifurcations and the stability of the bifurcating periodic solutions. Finally, numerical simulation results are given to support the theoretical predictions.  相似文献   

10.
The complex dynamics is explored in a prey predator system with multiple delays. Holling type-II functional response is assumed for prey dynamics. The predator dynamics is governed by modified Leslie-Gower scheme. The existence of periodic solutions via Hopf-bifurcation with respect to both delays are established. An algorithm is developed for drawing two-parametric bifurcation diagram with respect to two delays. The domain of stability with respect to τ1 and τ2 is thus obtained. The complex dynamical behavior of the system outside the domain of stability is evident from the exhaustive numerical simulation. Direction and stability of periodic solutions are also determined using normal form theory and center manifold argument.  相似文献   

11.
In this paper, we investigate the stability and Hopf bifurcation of a new regulated logistic growth with discrete and distributed delays. By choosing the discrete delay τ as a bifurcation parameter, we prove that the system is locally asymptotically stable in a range of the delay and Hopf bifurcation occurs as τ crosses a critical value. Furthermore, explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived by normal form theorem and center manifold argument. Finally, an illustrative example is also given to support the theoretical results.  相似文献   

12.
本文研究一类含两相异时滞的捕食-被捕食系统的稳定性及分歧。首先,我们讨论两相异时滞对系统唯一正平衡点的稳定性的影响,通过对系数与时滞有关的特征方程的分析,建立了一种稳定性判别性。其次,将一个时滞看成分歧参数,而另一个看作固定参数,我们证明了该系统具有HOPF分歧特性。最后,我们讨论了分歧解的稳定性。  相似文献   

13.
14.
In this paper, we concentrate on the spatiotemporal patterns of a delayed reaction‐diffusion Holling‐Tanner model with Neumann boundary conditions. In particular, the time delay that is incorporated in the negative feedback of the predator density is considered as one of the principal factors to affect the dynamic behavior. Firstly, a global Turing bifurcation theorem for τ = 0 and a local Turing bifurcation theorem for τ > 0 are given. Then, further considering the degenerated situation, we derive the existence of Bogdanov‐Takens bifurcation and Turing‐Hopf bifurcation. The normal form method is used to study the explicit dynamics near the Turing‐Hopf singularity. It is shown that a pair of stable nonconstant steady states (stripe patterns) and a pair of stable spatially inhomogeneous periodic solutions (spot patterns) could be bifurcated from a positive equilibrium. Moreover, the Turing‐Turing‐Hopf–type spatiotemporal patterns, that is, a subharmonic phenomenon with two spatial wave numbers and one temporal frequency, are also found and explained theoretically. Our results imply that the interaction of Turing and Hopf instabilities can be considered as the simplest mechanism for the appearance of complex spatiotemporal dynamics.  相似文献   

15.
In this paper, the Leslie-Gower predator-prey system with two delays is investigated. By choosing the delay as a bifurcation parameter, we show that Hopf bifurcations can occur as the delay crosses some critical values. In addition, special attention is paid to the global continuation of local Hopf bifurcations. Using a global Hopf bifurcation theorem for functional differential equations, we show the global existence of periodic solutions.  相似文献   

16.
This paper deals with the existence of both Hopf bifurcation and topological horseshoe for a novel finance chaotic system. First, through rigorous mathematical analysis, we show that a Hopf bifurcation occurs at systems’ three equilibriums S0,1,2 and Hopf bifurcation at equilibrium S0 is non-degenerate and supercritical. Second, the computer-assisted verifications for horseshoe chaos in the system are given. Simulation results are presented to support the analysis.  相似文献   

17.
In this paper, an eco-epidemiological model with a stage structure is considered. The asymptotical stability of the five equilibria, the existence of stability switches about positive equilibrium, is investigated. It is found that Hopf bifurcation occurs when the delay τ passes though a critical value. Some explicit formulae determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Some numerical simulations for justifying the theoretical analysis are also provided. Finally, biological explanations and main conclusions are given.  相似文献   

18.
19.
In this paper, we analyze the stability and Hopf bifurcation of the biological economic system based on the new normal form and the Hopf bifurcation theorem. The basic model we consider is owed to a ratio-dependent predator-prey system with harvesting, compared with other researches on dynamics of predator-prey population, this system is described by differential-algebraic equations due to economic factor. Here μ as bifurcation parameter, it is found that periodic solutions arise from stable stationary states when the parameter μ increases close to a certain limit. Finally, numerical simulations illustrate the effectiveness of our results.  相似文献   

20.
Both discrete and distributed delays are considered in a two‐neuron system. We analyze the influence of interaction coefficient and time delay on the Hopf‐pitchfork bifurcation. First, we obtain the codimension‐2 unfolding with original parameters for Hopf‐pitchfork bifurcation by using the center manifold reduction and the normal form method. Next, through analyzing the unfolding structure, we give complete bifurcation diagrams and phase portraits, in which multistability and other dynamical behaviors of the original system are found, such as a stable periodic orbit, the coexistence of two stable nontrivial equilibria, and the coexistence of a stable periodic orbit and two stable equilibria. In addition, the obtained theoretical results are verified by numerical simulations. Finally, we perform the comparisons of the obtained results of Hopf‐pitchfork bifurcation with other Hopf‐fold bifurcation results in some biological neural systems and give the obtained mathematical results corresponding to the physical states of neurons. Copyright © 2015 JohnWiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号